
Model Predictive Control Toolbox™

Reference

Alberto Bemporad
Manfred Morari
N. Lawrence Ricker

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Model Predictive Control Toolbox™ Reference
© COPYRIGHT 2005–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

October 2004 First printing New for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.2.2 (Release 2006a)
September 2006 Online only Revised for Version 2.2.3 (Release 2006b)
March 2007 Online only Revised for Version 2.2.4 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.1.1 (Release 2009b)
March 2010 Online only Revised for Version 3.2 (Release 2010a)
September 2010 Online only Revised for Version 3.2.1 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.1.1 (Release 2012b)
March 2013 Online only Revised for Version 4.1.2 (Release 2013a)
September 2013 Online only Revised for Version 4.1.3 (Release R2013b)
March 2014 Online only Revised for Version 4.2 (Release R2014a)
October 2014 Online only Revised for Version 5.0 (Release R2014b)
March 2015 Online only Revised for Version 5.0.1 (Release 2015a)
September 2015 Online only Revised for Version 5.1 (Release 2015b)
March 2016 Online only Revised for Version 5.2 (Release 2016a)
September 2016 Online only Revised for Version 5.2.1 (Release 2016b)

Contents

Functions – Alphabetical List
1

Block Reference
2

Object Reference
3

MPC Controller Object . 3-2
ManipulatedVariables . 3-2
OutputVariables . 3-4
DisturbanceVariables . 3-5
Weights . 3-5
Model . 3-7
Ts . 3-9
Optimizer . 3-9
PredictionHorizon . 3-11
ControlHorizon . 3-11
History . 3-11
Notes . 3-11
UserData . 3-11
Construction and Initialization . 3-12

MPC Simulation Options Object . 3-13

MPC State Object . 3-16

v

Explicit MPC Controller Object . 3-18
Properties . 3-18

vi Contents

1

Functions – Alphabetical List

1 Functions – Alphabetical List

cloffset
Compute MPC closed-loop DC gain from output disturbances to measured outputs
assuming constraints are inactive at steady state

Syntax
DCgain = cloffset(MPCobj)

Description

The cloff function computes the DC gain from output disturbances to measured
outputs, assuming constraints are not active, based on the feedback connection between
Model.Plant and the linearized MPC controller, as depicted below.

Computing the Effect of Output Disturbances

By superposition of effects, the gain is computed by zeroing references, measured
disturbances, and unmeasured input disturbances.

DCgain = cloffset(MPCobj) returns an nym-by-nym DC gain matrix DCgain, where
nym is the number of measured plant outputs. MPCobj is the MPC object specifying the

1-2

 cloffset

controller for which the closed-loop gain is calculated. DCgain(i,j) represents the
gain from an additive (constant) disturbance on output j to measured output i. If row i
contains all zeros, there will be no steady-state offset on output i.

See Also
mpc | ss

Related Examples
• “Compute Steady-State Gain”

Introduced before R2006a

1-3

1 Functions – Alphabetical List

compare
Compare two MPC objects

Syntax
yesno = compare(MPC1,MPC2)

Description

The compare function compares the contents of two MPC objects MPC1, MPC2. If the
design specifications (models, weights, horizons, etc.) are identical, then yesno is equal
to 1.

Note compare may return yesno = 1 even if the two objects are not identical. For
instance, MPC1 may have been initialized while MPC2 may have not, so that they may
have different sizes in memory. In any case, if yesno = 1, the behavior of the two
controllers will be identical.

See Also
mpc

Introduced before R2006a

1-4

 d2d

d2d
Change MPC controller sample

Syntax
MPCobj = d2d(MPCobj,Ts)

Description

The d2d function changes the sample time of the MPC controller MPCobj to Ts. All
models are sampled or resampled as soon as the QP matrices must be computed, for
example when sim or mpcmove are called.

See Also
mpc | set

Introduced before R2006a

1-5

1 Functions – Alphabetical List

generateExplicitMPC
Convert implicit MPC controller to explicit MPC controller

Given a traditional Model Predictive Controller design in the implicit form, convert it to
the explicit form for real-time applications requiring fast sample time.

Syntax

EMPCobj = generateExplicitMPC(MPCobj,range)

EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Description

EMPCobj = generateExplicitMPC(MPCobj,range) converts a traditional (implicit)
MPC controller to the equivalent explicit MPC controller, using the specified parameter
bounds. This calculation usually requires significant computational effort because a
multi-parametric quadratic programming problem is solved during the conversion.

EMPCobj = generateExplicitMPC(MPCobj,range,opt) converts the MPC
controller using additional optimization options.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a
double-integrator plant.

Define the double-integrator plant.

plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a
prediction horizon of 10, and a control horizon of 3.

Ts = 0.1;

1-6

 generateExplicitMPC

p = 10;

m = 3;

MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

To generate an explicit MPC controller, you must specify the ranges of parameters such
as state values and manipulated variables. To do so, generate a range structure. Then,
modify values within the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

range.State.Min(:) = [-10;-10];

range.State.Max(:) = [10;10];

range.Reference.Min = -2;

range.Reference.Max = 2;

range.ManipulatedVariable.Min = -1.1;

range.ManipulatedVariable.Max = 1.1;

Use the more robust reduction method for the computation. Use
generateExplicitOptions to create a default options set, and then modify the
polyreduction option.

opt = generateExplicitOptions(MPCobj);

opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)

Polyhedral regions: 1

Number of parameters: 4

Is solution simplified: No

State Estimation: Default Kalman gain

1-7

1 Functions – Alphabetical List

Type 'EMPCobj.MPC' for the original implicit MPC design.

Type 'EMPCobj.Range' for the valid range of parameters.

Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computation.

Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

• “Explicit MPC Control of a Single-Input-Single-Output Plant”
• “Explicit MPC Control of an Aircraft with Unstable Poles”
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”

Input Arguments

MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an MPC controller object. Use the mpc command
to create a traditional MPC controller.

range — Parameter bounds
structure

Parameter bounds, specified as a structure that you create with the
generateExplicitRange command. This structure specifies the bounds on the
parameters upon which the explicit MPC control law depends, such as state values,
measured disturbances, and manipulated variables. See generateExplicitRange for
detailed descriptions of these parameters.

opt — optimization options
structure

Optimization options for the conversion computation, specified as a structure that you
create with the mpcExplicitOptions command. See generateExplicitOptions for
detailed descriptions of these options.

Output Arguments

EMPCobj — Explicit MPC controller
explicit MPC controller object

1-8

 generateExplicitMPC

Explicit MPC controller that is equivalent to the input traditional controller, returned as
an explicit MPC controller object. The properties of the explicit MPC controller object are
summarized in the following table.

Property Description

MPC Traditional (implicit) controller object used
to generate the explicit MPC controller.
You create this MPC controller using is the
mpc command. It is the first argument to
generateExplicitMPC when you create
the explicit MPC controller. See “MPC
Controller Object” on page 3-2 or
type mpcprops for details regarding the
properties of the MPC controller.

Range 1-D structure containing the parameter
bounds used to generate the explicit
MPC controller. These determine the
resulting controller’s valid operating
range. This property is automatically
populated by the range input argument
to generateExplicitMPC when you
create the explicit MPC controller. See
generateExplicitRange for details
about this structure.

OptimizationOptions 1-D structure containing user-modifiable
options used to generate the explicit MPC
controller. This property is automatically
populated by the opt argument to
generateExplicitMPC when you
create the explicit MPC controller. See
generateExplicitOptions for details
about this structure.

PiecewiseAffineSolution nr-dimensional structure, where nr is the
number of piecewise affine (PWA) regions
required to represent the control law. The
ith element contains the details needed to
compute the optimal manipulated variables

1-9

1 Functions – Alphabetical List

Property Description

when the solution lies within the ith region.
See “Implementation”.

IsSimplified Logical switch indicating whether the
explicit control law has been modified
using the simplify command such that
the explicit control law approximates
the base (implicit) MPC controller. If the
control law has not been modified, the
explicit controller should reproduce the
base controller’s behavior exactly, provided
both operate within the bounds described
by the Range property.

More About

Tips

• Using Explicit MPC, you will most likely achieve best performance in small control
problems, which involve small numbers of plant inputs/outputs/states as well as the
number of constraints.

• Test the implicit controller thoroughly before attempting a conversion. This helps to
determine the range of controller states and other parameters needed to generate the
explicit controller.

• Simulate the explicit controller’s performance using the sim or mpcmoveExplicit
commands, or the Explicit MPC Controller block in Simulink®.

• generateExplicitMPC displays progress messages in the command window. Use
mpcverbosity to turn off the display.

• “Explicit MPC”
• “Design Workflow for Explicit MPC”

See Also
generateExplicitOptions | generateExplicitRange | mpc | simplify

Introduced in R2014b

1-10

 generateExplicitOptions

generateExplicitOptions
Optimization options for explicit MPC generation

Syntax

opt = generateExplicitOptions(MPCobj)

Description

opt = generateExplicitOptions(MPCobj) creates a set of options to use
when converting a traditional MPC controller, MPCobj, to explicit form using
generateExplicitMPC. The options set is returned with all options set to default
values. Use dot notation to modify the options.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a
double-integrator plant.

Define the double-integrator plant.

plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a
prediction horizon of 10, and a control horizon of 3.

Ts = 0.1;

p = 10;

m = 3;

MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

1-11

1 Functions – Alphabetical List

To generate an explicit MPC controller, you must specify the ranges of parameters such
as state values and manipulated variables. To do so, generate a range structure. Then,
modify values within the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

range.State.Min(:) = [-10;-10];

range.State.Max(:) = [10;10];

range.Reference.Min = -2;

range.Reference.Max = 2;

range.ManipulatedVariable.Min = -1.1;

range.ManipulatedVariable.Max = 1.1;

Use the more robust reduction method for the computation. Use
generateExplicitOptions to create a default options set, and then modify the
polyreduction option.

opt = generateExplicitOptions(MPCobj);

opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)

Polyhedral regions: 1

Number of parameters: 4

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.

Type 'EMPCobj.Range' for the valid range of parameters.

Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computation.

1-12

 generateExplicitOptions

Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

Input Arguments

MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an MPC controller object. Use the mpc command
to create a traditional MPC controller.

Output Arguments

opt — Options for generating explicit MPC controller
structure

Options for generating explicit MPC controller, returned as a structure. When you create
the structure, all the options are set to default values. Use dot notation to modify any
options you want to change. The fields and their default values are as follows.

zerotol — Zero-detection tolerance
1e-8 (default) | positive scalar value

Zero-detection tolerance used by the NNLS solver, specified as a positive scalar value.

removetol — Redundant-inequality-constraint detection tolerance
1e-4 (default) | positive scalar value

Redundant-inequality-constraint detection tolerance, specified as a positive scalar value.

flattol — Flat region detection tolerance
1e-5 (default) | positive scalar value

Flat region detection tolerance, specified as a positive scalar value.

normalizetol — Constraint normalization tolerance
0.01 (default) | positive scalar value

Constraint normalization tolerance, specified as a positive scalar value.

1-13

1 Functions – Alphabetical List

maxiterNNLS — Maximum number of NNLS solver iterations
500 (default) | positive integer

Maximum number of NNLS solver iterations, specified as a positive integer.

maxiterQP — Maximum number of QP solver iterations
200 (default) | positive integer

Maximum number of QP solver iterations, specified as a positive integer.

maxiterBS — Maximum number of bisection method iterations
100 (default) | positive integer

Maximum number of bisection method iterations used to detect region flatness, specified
as a positive integer.

polyreduction — Method for removing redundant inequalities
2 (default) | 1

Method used to remove redundant inequalities, specified as either 1 (robust) or 2 (fast).

See Also
generateExplicitMPC

Introduced in R2014b

1-14

 generateExplicitRange

generateExplicitRange
Bounds on explicit MPC control law parameters

Syntax

Range = generateExplicitRange(MPCobj)

Description

Range = generateExplicitRange(MPCobj) creates a structure of parameter bounds
based upon a traditional (implicit) MPC controller object. The range structure is intended
for use as an input argument to generateExplicitMPC. Usually, the initial range
values returned by generateExplicitRange are not suitable for generating an explicit
MPC controller. Therefore, use dot notation to set the values of the range structure
before calling generateExplicitMPC.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a
double-integrator plant.

Define the double-integrator plant.

plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a
prediction horizon of 10, and a control horizon of 3.

Ts = 0.1;

p = 10;

m = 3;

MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

1-15

1 Functions – Alphabetical List

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

To generate an explicit MPC controller, you must specify the ranges of parameters such
as state values and manipulated variables. To do so, generate a range structure. Then,
modify values within the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

range.State.Min(:) = [-10;-10];

range.State.Max(:) = [10;10];

range.Reference.Min = -2;

range.Reference.Max = 2;

range.ManipulatedVariable.Min = -1.1;

range.ManipulatedVariable.Max = 1.1;

Use the more robust reduction method for the computation. Use
generateExplicitOptions to create a default options set, and then modify the
polyreduction option.

opt = generateExplicitOptions(MPCobj);

opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)

Polyhedral regions: 1

Number of parameters: 4

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.

Type 'EMPCobj.Range' for the valid range of parameters.

Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computation.

1-16

 generateExplicitRange

Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

Input Arguments

MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an MPC controller object. Use the mpc command
to create a traditional MPC controller.

Output Arguments

Range — Parameter bounds
structure

Parameter bounds for generating an explicit MPC controller from MPCobj, returned as a
structure.

Initially, each parameter’s minimum and maximum bounds are identical. All such
parameters are considered fixed. When you generate an explicit controller, any fixed
parameters must be constant when the controller operates. This is unlikely to happen in
general. Thus, you must specify valid bounds for all parameters. Use dot notation to set
the values of the range structure as appropriate for your system.

The fields of the range structure are as follows.

State — Bounds on controller state values
structure

Bounds on controller state values, specified as a structure containing fields Min and
Max. Each of Min and Max is a vector of length nx, where nx is the number of controller
states. Range.State.Min and Range.State.Max contain the minimum and maximum
values, respectively, of all controller states. For example, suppose you are designing a
two-state controller. You have determined that the range of the first controller state is
[-1000,1000], and that of the second controller state is [0,2*pi]. Set these bounds as
follows:

Range.State.Min(:) = [-1000,0];

1-17

1 Functions – Alphabetical List

Range.State.Max(:) = [1000,2*pi];

MPC controller states include states from plant model, disturbance model, and noise
model, in that order. Setting the range of a state variable is sometimes difficult when a
state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

Reference — Bounds on controller reference signal values
structure

Bounds on controller reference signal values, specified as a structure containing fields
Min and Max. Each of Min and Max is a vector of length ny, where ny is the number
of plant outputs. Range.Reference.Min and Range.Reference.Max contain the
minimum and maximum values, respectively, of all reference signal values. For example,
suppose you are designing a controller for a two-output plant. You have determined that
the range of the first plant output is [-1000,1000], and that of the second plant output
is [0,2*pi]. Set these bounds as follows:

Range.Reference.Min(:) = [-1000,0];

Range.Reference.Max(:) = [1000,2*pi];

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate the explicit MPC controller
must be at least as large as the practical range.

MeasuredDisturbance — Bounds on measured disturbance values
structure

Bounds on measured disturbance values, specified as a structure containing fields
Min and Max. Each of Min and Max is a vector of length nmd, where nmd is the number
of measured disturbances. If your system has no measured disturbances, leave the
generated values of this field unchanged.

Range.MeasuredDisturbance.Min and Range.MeasuredDisturbance.Max contain
the minimum and maximum values, respectively, of all measured disturbance signals.
For example, suppose you are designing a controller for a system with two measured
disturbances. You have determined that the range of the first disturbance is [-1,1], and
that of the second disturbance is [0,0.1]. Set these bounds as follows:

Range.Reference.Min(:) = [-1,0];

Range.Reference.Max(:) = [1,0.1];

1-18

 generateExplicitRange

Usually you know the practical range of the measured disturbance signals being used at
the nominal operating point in the plant. The ranges used to generate the explicit MPC
controller must be at least as large as the practical range.

ManipulatedVariable — Bounds on manipulated variable values
structure

Bounds on manipulated variable values, specified as a structure containing
fields Min and Max. Each of Min and Max is a vector of length nu, where nu is the
number of manipulated variables. Range.ManipulatedVariable.Min and
Range.ManipulatedVariable.Max contain the minimum and maximum values,
respectively, of all manipulated variables. For example, suppose your system has two
manipulated variables. The range of the first manipulated variable is [-1,1], and that
of the second variable is [0,0.1]. Set these bounds as follows:

Range.ManipulatedVariable.Min(:) = [-1,0];

Range.ManipulatedVariable.Max(:) = [1,0.1];

If manipulated variables are constrained, the ranges used to generate the explicit MPC
controller must be at least as large as these limits.

See Also
generateExplicitMPC | generateExplicitOptions | mpc

Introduced in R2014b

1-19

1 Functions – Alphabetical List

generatePlotParameters
Parameters for plotSection

Syntax

plotParams = generatePlotParameters(EMPCobj)

Description

plotParams = generatePlotParameters(EMPCobj) creates a structure of
parameters for a 2-D sectional plot of the explicit MPC control law of the explicit MPC
controller, EMPCobj. You set the fields of this structure and use it to generate the plot
using the plotSection command.

Examples

Specify Fixed Parameters for 2-D Plot of Explicit Control Law

Define a double integrator plant model and create a traditional implicit MPC controller
for this plant. Constrain the manipulated variable to have an absolute value less than 1.

plant = tf(1,[1 0 0]);

MPCobj = mpc(plant,0.1,10,3);

MPCobj.MV = struct('Min',-1,'Max',1);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define the parameter bounds for generating an explicit MPC controller.

range = generateExplicitRange(MPCobj);

range.State.Min(:) = [-10;-10];

range.State.Max(:) = [10;10];

range.Reference.Min(:) = -2;

range.Reference.Max(:) = 2;

range.ManipulatedVariable.Min(:) = -1.1;

range.ManipulatedVariable.Max(:) = 1.1;

1-20

 generatePlotParameters

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Create an explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range);

Regions found / unexplored: 19/ 0

Create a default plot parameter structure, which specifies that all of the controller
parameters are fixed at their nominal values for plotting.

plotParams = generatePlotParameters(EMPCobj);

Allow the controller states to vary when creating a plot.

plotParams.State.Index = [];

plotParams.State.Value = [];

Fix the manipulated variable and reference signal to 0 for plotting.

plotParams.ManipulatedVariable.Index(1) = 1;

plotParams.ManipulatedVariable.Value(1) = 0;

plotParams.Reference.Index(1) = 1;

plotParams.Reference.Value(1) = 0;

Generate the 2-D section plot for the explicit MPC controller.

plotSection(EMPCobj,plotParams)

ans =

 Figure (1: PiecewiseAffineSectionPlot) with properties:

 Number: 1

 Name: 'PiecewiseAffineSectionPlot'

 Color: [0.9400 0.9400 0.9400]

 Position: [360 502 560 420]

 Units: 'pixels'

1-21

1 Functions – Alphabetical List

 Use GET to show all properties

Input Arguments

EMPCobj — Explicit MPC controller
explicit MPC controller object

Explicit MPC controller for which you want to create a 2-D sectional plot, specified as an
Explicit MPC controller object. Use generateExplicitMPC to create an explicit MPC
controller.

1-22

 generatePlotParameters

Output Arguments

plotParams — Parameters for sectional plot
structure

Parameters for sectional plot of explicit MPC control law, returned as a structure.

As returned by generatePlotParameters, the plotParams structure command fixes
all the control law’s parameters at their nominal values. To obtain the desired plot,
eliminate the Index and Value entries of the two parameters forming the plot axes,
and modify fixed values as necessary. Then, use the plotSection command to display
the 2-D sectional plot of the explicit control law’s PWA regions with the remaining free
parameters as the x and y axes.

The fields of the plot-parameters structure are as follows.

State — Fixed controller states
structure

Fixed controller states, specified as a structure having an Index field and a Value
field. The field plotParams.State.Index is a vector that contains the indices of
the controller states to fix for the plot, and plotParams.State.Value contains the
corresponding constant state values.

Modify the default value of plotParams.State to generate the desired plot. See
“Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page 1-20.

Reference — Fixed reference signal values
structure

Fixed reference signal values, specified as a structure having an Index field and a Value
field. The field plotParams.Reference.Index is a vector that contains the indices of
the reference signals to fix for the plot, and plotParams.Reference.Value contains
the corresponding constant reference signal values.

Modify the default value of plotParams.Reference to generate the desired plot. See
“Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page 1-20.

MeasuredDisturbance — Fixed measured disturbance values
structure

1-23

1 Functions – Alphabetical List

Fixed measured disturbance values, specified as a structure having an Index field
and a Value field. The field plotParams.MeasuredDisturbance.Index is a
vector that contains the indices of the measured disturbances to fix for the plot, and
plotParams.MeasuredDisturbance.Value contains the corresponding constant
measured disturbance values.

Modify the default value of plotParams.MeasuredDisturbance to generate the
desired plot. See “Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page
1-20.

ManipulatedVariable — Fixed manipulated variable values
structure

Fixed manipulated variable values, specified as a structure having an Index field
and a Value field. The field plotParams.ManipulatedVariable.Index is a
vector that contains the indices of the manipulated variables to fix for the plot, and
plotParams.ManipulatedVariable.Value contains the corresponding constant
manipulated variable values.

Modify the default value of plotParams.ManipulatedVariable to generate the
desired plot. See “Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page
1-20.

See Also
generateExplicitMPC | plotSection

Introduced in R2014b

1-24

 get

get
MPC property values

Syntax

Value = get(MPCobj,PropertyName)

Struct = get(MPCobj)

get(MPCobj)

Description

Value = get(MPCobj,PropertyName) returns the current value of the property
PropertyName of the MPC controller MPCobj. The character vector PropertyName
can be the full property name (for example, 'UserData') or any unambiguous case-
insensitive abbreviation (for example, 'user'). You can specify any generic MPC
property.

Struct = get(MPCobj) converts the MPC controller MPCobj into a standard
MATLAB® structure with the property names as field names and the property values as
field values.

get(MPCobj) without a left-side argument displays all properties of MPCobj and their
values.

More About

Tips

An alternative to the syntax

Value = get(MPCobj,'PropertyName')

is the structure-like referencing

Value = MPCobj.PropertyName

1-25

1 Functions – Alphabetical List

For example,

MPCobj.Ts

MPCobj.p

return the values of the sampling time and prediction horizon of the MPC controller
MPCobj.

See Also
mpc | set

Introduced before R2006a

1-26

 getCodeGenerationData

getCodeGenerationData
Create data structures for mpcmoveCodeGeneration

Syntax
[configData,stateData,onlineData] = getCodeGenerationData(MPCobj)

[___] = getCodeGenerationData(___ ,Name,Value)

Description
[configData,stateData,onlineData] = getCodeGenerationData(MPCobj)

creates data structures for use with mpcmoveCodeGeneration.

[___] = getCodeGenerationData(___ ,Name,Value) specifies additional options
using one or more Name,Value pair arguments.

Examples
Create MPC Code Generation Data Structures

Create a plant model, and define the MPC signal types.

plant = rss(3,2,2);

plant.D = 0;

plant = setmpcsignals(plant,'mv',1,'ud',2,'mo',1,'uo',2);

Create an MPC controller.

mpcObj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2

Configure your controller parameters. For example, define bounds for the manipulated
variable.

1-27

1 Functions – Alphabetical List

mpcObj.ManipulatedVariables.Min = -1;

mpcObj.ManipulatedVariables.Max = 1;

Create code generation data structures.

[configData,stateData,onlineData] = getCodeGenerationData(mpcObj);

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #2 is integrated white noise.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #2 is integrated white noise.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Specify Options for Creating MPC Code Generation Structures

Create a a plant model and define the MPC signal types.

plant = rss(3,2,2);

plant.D = 0;

Create an MPC controller.

mpcObj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Create code generation data structures. Configure options to:

• Use single-precision floating-point values in the generated code
• Improve computational efficiency by not computing optimal sequence data.
• Use run your MPC controller in adaptive mode.

[configData,stateData,onlineData] = getCodeGenerationData(mpcObj,...

 'DataType','single','OnlyComputeCost',true,'IsAdaptive',true);

-->Converting model to discrete time.

1-28

 getCodeGenerationData

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Input Arguments

MPCobj — Model predictive controller
implicit MPC controller object | explicit MPC controller object

Model predictive controller, specified as one of the following:

• Implicit MPC controller object — To create an implicit MPC controller, use mpc.
• Explicit MPC controller object — To create an explicit MPC controller, design an

implicit controller and then use generateExplicitMPC.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'DataType','single' specifies that the generated code uses single-precision
floating point values.

'InitialState' — Initial controller state
mpcstate object

Initial controller state, specified as the comma-separated pair consisting of
'InitialState' and an mpcstate object. This state is used in place of the default
state information from MPCobj.

'DataType' — Data type used in generated code
'double' (default) | 'single'

Data type used in generated code, specified as specified as the comma-separated pair
consisting of 'DataType' and one of the following:

1-29

1 Functions – Alphabetical List

• 'double' — Use double-precision floating point values.
• 'single' — Use single-precision floating point values.

'OnlyComputeCost' — Toggle for computing only optimal cost
false (default) | true

Toggle for computing only optimal cost during simulation, specified as specified as
the comma-separated pair consisting of 'OnlyComputeCost' and either true or
false. To reduce computational load by not calculating optimal sequence data, set
OnlyComputeCost to true.

'IsAdaptive' — Adaptive MPC indicator
false (default) | true

Adaptive MPC indicator, specified as specified as the comma-separated pair consisting of
'IsAdaptive' and either true or false. Set IsAdaptive to true if your controller is
running in adaptive mode.

For more information on adaptive MPC, see “Adaptive MPC”.

Note: IsAdaptive and IsLTV cannot be true at the same time.

'IsLTV' — Time-varying MPC indicator
false (default) | true

Time-varying MPC indicator, specified as either true or false. Set IsLTV to true if
your controller is running in time-varying mode.

For more information on time-varying MPC, see “Time-Varying MPC”.

Note: IsAdaptive and IsLTV cannot be true at the same time.

Output Arguments

configData — MPC configuration parameters
structure

1-30

 getCodeGenerationData

MPC configuration parameters that are constant at run time, returned as a structure.
These parameters are derived from the controller settings in MPCobj. When simulating
your controller, pass configData to mpcmoveCodeGeneration without changing any
parameters.

stateData — Initial controller states
structure

Initial controller states, returned as a structure. To initialize your simulation with the
initial states defined in MPCobj, pass stateData to mpcmoveCodeGeneration. To use
different initial conditions, modify stateData. You can specify non-default controller
states using InitialState.

stateData has the following fields:

Plant — Plant model state estimates
MPCobj nominal plant states (default) | column vector of length nxp

Plant model state estimates, returned as a column vector of length nxp, where nxp is the
number of plant model states.

Disturbance — Unmeasured disturbance model state estimates
[] (default) | column vector of length nxd

Unmeasured disturbance model state estimates, returned as a column vector of length
nxd, where nxd is the number of unmeasured disturbance model states. Disturbance
contains the input disturbance model states followed by the output disturbance model
states.

To view the input and output disturbance models, use getindist and getoutdist
respectively.

Noise — Output measurement noise model state estimates
[] (default) | column vector of length nxn

Output measurement noise model state estimates, returned as a column vector of length
nxn, where nxn is the number of noise model states.

LastMove — Manipulated variable control moves from previous control interval
MPCobj nominal MV values (default) | column vector of length nmv

1-31

1 Functions – Alphabetical List

Manipulated variable control moves from previous control interval, returned as a column
vector of length nmv, where nmv is the number of manipulated variables.

Covariance — Covariance matrix for controller state estimates
symmetrical n-by-n array

Covariance matrix for controller state estimates, returned as a symmetrical n-by-n array,
where n is number of extended controller states; that is, the sum of nxp, nxd, and nxn.

If the controller uses custom state estimation, Covariance is empty.

iA — Active inequality constraints
false (default) | logical vector of length m

Active inequality constraints, where the equal portion of the inequality is true, returned
as a logical vector of length m. If iA(i) is true, then the ith inequality is active for the
latest QP solver solution.

Note: Do not change the value of iA. Always use the values returned by ether
getCodeGenerationData or mpcmoveCodeGeneration.

onlineData — Online controller data
structure

Online controller data that you must update at each control interval, returned as a
structure with the following fields:

Field Description

signals Input and output signals, returned as a structure with the
following fields.

Field Description

ym Measured outputs
ref Output references
md Measured disturbances
mvTarget Targets for manipulated variables
externalMV Manipulated variables externally applied to

the plant

1-32

 getCodeGenerationData

Field Description

limits Input and output constraints, returned as a structure with the
following fields:

Field Description

ymin Lower bounds on output signals
ymax Upper bounds on output signals
umin Lower bounds on input signals
umax Upper bounds on input signals

weights Updated QP optimization weights, returned as a structure with
the following fields:

Field Description

ywt Output weights
uwt Manipulated variable weights
duwt Manipulated variable rate weights
ecr Weight on slack variable used for constraint

softening

model Updated plant and nominal values for adaptive MPC and time-
varying MPC, returned as a structure with the following fields:

Field Description

A, B, C, D State-space matrices of discrete-time state-
space model.

X Nominal plant states
U Nominal plant inputs
Y Nominal plant outputs
DX Nominal plant state derivatives

getCodeGenerationData returns onlineData with empty matrices for all structure
fields, exceptsignals.ref, signals.ym, and signals.md. These fields contain the
corresponding nominal signal values from MPCobj. If your controller does not have
measured disturbances, signals.md is returned as an empty matrix.

1-33

1 Functions – Alphabetical List

For more information on configuring onlineData fields, see mpcmoveCodeGeneration

More About
• “Generate Code To Compute Optimal MPC Moves in MATLAB”
• “Generate Code and Deploy Controller to Real-Time Targets”

See Also
mpcmoveCodeGeneration

Introduced in R2016a

1-34

 getconstraint

getconstraint
Set custom constraints on linear combinations of plant inputs and outputs

Syntax

[E,F,G,V,S] = getconstraint(MPCobj)

Description

[E,F,G,V,S] = getconstraint(MPCobj) returns the custom constraints previously
defined for the MPC controller, MPCobj. The constraints are in the general form:
Eu(k + j|k) + Fy(k + j|k) + Sv(k + j|k) ≤ G + εV
where j = 0,...,p, and:

• p is the prediction horizon.
• k is the current time index.
• u is a column vector manipulated variables.
• y is a column vector of all plant output variables.
• v is a column vector of measured disturbance variables.
• ε is a scalar slack variable used for constraint softening (as in “Standard Cost

Function”).
• E, F, G, V, and S are constant matrices.

Since the MPC controller does not optimize u(k+p|k), getconstraint calculates the
last constraint at time k+p assuming that u(k+p|k) = u(k+p-1|k).

Examples

Retrieve Custom Constraints from MPC Controller

Create a third-order plant model with two manipulated variables, one measured
disturbance, and two measured outputs.

plant = rss(3,2,3);

1-35

1 Functions – Alphabetical List

plant.D = 0;

plant = setmpcsignals(plant,'mv',[1 2],'md',3);

Create an MPC controller for this plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Assume that you have two soft constraints.

Set the constraints for the MPC controller.

E = [1 1; 0 0];

F = [0 0; 0 1];

G = [5;10];

V = [1;1];

S = [0;1];

setconstraint(MPCobj,E,F,G,V,S)

Retrieve the constraints from the controller.

[E,F,G,V,S] = getconstraint(MPCobj)

E =

 1 1

 0 0

F =

 0 0

 0 1

1-36

 getconstraint

G =

 5

 10

V =

 1

 1

S =

 0

 1

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

Output Arguments

E — Manipulated variable constraint constant
matrix

Manipulated variable constraint constant, returned as a matrix with:

• nc rows, where nc is the number of constraints.
• nu columns, where nu is the number of manipulated variables.

If MPCobj has no custom constraints, then E is empty, [].

F — Controlled output constraint constant
matrix

1-37

1 Functions – Alphabetical List

Controlled output constraint constant, returned as a matrix with:

• nc rows, where nc is the number of constraints.
• ny columns, where ny is the number of controlled outputs (measured and

unmeasured).

If MPCobj has no custom constraints, then F is empty [].

G — Custom constraint constant
column vector

Custom constraint constant, returned as a column vector with nc elements, where nc is
the number of constraints.

If MPCobj has no custom constraints, then G is empty [].

V — Constraint softening constant
column vector

Constraint softening constant representing the equal concern for the relaxation (ECR),
returned as a column vector with nc elements, where nc is the number of constraints. If
MPCobj has no custom constraints, then V is empty [].

If V is not specified, a default value of 1 is applied to all constraint inequalities and all
constraints are soft. This behavior is the same as the default behavior for output bounds,
as described in “Standard Cost Function”.

To make the ith constraint hard, specify V(i) = 0.

To make the ith constraint soft, specify V(i) > 0 in keeping with the constraint violation
magnitude you can tolerate. The magnitude violation depends on the numerical scale of
the variables involved in the constraint.

In general, as V(i) decreases, the controller hardens the constraints by decreasing the
constraint violation that is allowed.

S — Measured disturbance constraint constant
matrix

Measured disturbance constraint constant, returned as a matrix with:

• nc rows, where nc is the number of constraints.

1-38

 getconstraint

• nv columns, where nv is the number of measured disturbances.

If there are no measured disturbances in the custom constraints, or MPCobj has no
custom constraints, then S is empty [].

More About
• “Constraints on Linear Combinations of Inputs and Outputs”

See Also
setconstraint

Introduced in R2011a

1-39

1 Functions – Alphabetical List

getEstimator

Obtain Kalman gains and model for estimator design

Syntax

[L,M] = getEstimator(MPCobj)

[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj)

[L,M,model,index] = getEstimator(MPCobj,'sys')

Description

[L,M] = getEstimator(MPCobj) extracts the Kalman gains used by the state
estimator in a model predictive controller. The estimator updates the states of internal
plant, disturbance, and noise models at the beginning of each controller interval.

[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj) also returns the system matrices
used to calculate the estimator gains.

[L,M,model,index] = getEstimator(MPCobj,'sys') returns an LTI state-
space representation of the system used for state-estimator design and a structure
summarizing the I/O signal types of the system.

Examples

Extract Parameters for State Estimation

The plant is a stable, discrete LTI ss model with four states, three inputs and three
outputs. The manipulated variables are inputs 1 and 2. Input 3 is an unmeasured
disturbance. Outputs 1 and 3 are measured. Output 2 is unmeasured.

Create a model of the plant and specify the signals for MPC.

rng(1253) % For repeatable results

Plant = drss(4,3,3);

1-40

 getEstimator

Plant.Ts = 0.25;

Plant = setmpcsignals(Plant,'MV',[1,2],'UD',3,'MO',[1 3],'UO', 2);

Plant.d(:,[1,2]) = 0;

The last command forces the plant to satisfy the assumption of no direct feedthrough.

Calculate the default Model Predictive Controller for this plant.

MPCobj = mpc(Plant);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 y3 and zero weight for output(s) y2

Obtain the parameters to be used in state estimation.

[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj);

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #3 is integrated white noise.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

 Assuming no disturbance added to measured output channel #3.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Based on the estimator state equation, the the estimator poles are given by the
eigenvalues of A - L*Cm. Calculate and display the poles.

Poles = eig(A - L*Cm)

Poles =

 -0.7467

 -0.5019

 0.0769

 0.4850

 0.8825

 0.8291

Confirm that the default estimator is asymptotically stable.

1-41

1 Functions – Alphabetical List

max(abs(Poles))

ans =

 0.8825

This value is less than 1, so the estimator is asymptotically stable.

Verify that in this case, L = A*M.

L - A*M

ans =

 1.0e-15 *

 0.1943 0.1249

 -0.0971 -0.0278

 -0.0139 0

 0.0416 0.0416

 0.0416 0.0278

 -0.0833 -0.0278

Input Arguments

MPCobj — MPC controller
MPC controller object

MPC controller, specified as an MPC controller object. Use the mpc command to create
the MPC controller.

Output Arguments

L — Kalman gain matrix for time update
matrix

1-42

 getEstimator

Kalman gain matrix for the time update, returned as a matrix. The dimensions of L are
nx-by-nym, where nx is the total number of controller states, and nym is the number of
measured outputs. See “State Estimator Equations” on page 1-44.

M — Kalman gain matrix for measurement update
matrix

Kalman gain matrix for the measurement update, returned as a matrix. The dimensions
of L are nx-by-nym, where nx is the total number of controller states, and nym is the
number of measured outputs. See “State Estimator Equations” on page 1-44.

A,Cm,Bu,Bv,Dvm — System matrices
matrices

System matrices used to calculate the estimator gains, returned as matrices of various
dimensions. For definitions of these system matrices, see “State Estimator Equations” on
page 1-44.

model — System used for state-estimator design
state-space model

System used for state-estimator design, returned as a state-space (ss) model. The input
to model is a vector signal comprising the following components, concatenated in the
following order:

• Manipulated variables
• Measured disturbance variables
• 1
• Noise inputs to disturbance models
• Noise inputs to measurement noise model

The number of noise inputs depends on the disturbance and measurement noise models
within MPCobj. For the category noise inputs to disturbance models, inputs to the input
disturbance model (if any) precede those entering the output disturbance model (if any).
The constant input, 1, accounts for nonequilibrium nominal values (see “MPC Modeling”).

To make the calculation of gains L and M more robust, additive white noise inputs are
assumed to affect the manipulated variables and measured disturbances (see “Controller
State Estimation”). These white noise inputs are not included in model.

1-43

1 Functions – Alphabetical List

index — Locations of variables within model
structure

Locations of variables within the inputs and outputs of model. The structure summarizes
these locations with the following fields and values.

Field Name Value

ManipulatedVariables Indices of manipulated variables within the
input vector of model.

MeasuredDisturbances Indices of measured input disturbances
within the input vector of model.

Offset Index of the constant input 1 within the
input vector of model.

WhiteNoise Indices of unmeasured disturbance inputs
within the input vector of model.

MeasuredOutputs Indices of measured outputs within the
output vector of model.

UmeasuredOutputs Indices of unmeasured outputs within the
output vector of model.

More About

State Estimator Equations

The following equations describe the state estimation. For more details, see “Controller
State Estimation”.

Output estimate: ym[n|n–1] = Cm x[n|n–1] + Dvm v[n].

Measurement update: x[n|n] = x[n|n–1] + M (ym[n] –ym[n|n–1]).

Time update: x[n+1|n] = A x[n|n–1] + Bu u[n] + Bv v[n] + L (ym[n] – ym[n|n–1]).

Estimator state: x[n+1|n] = (A – L Cm) x[n|n–1] + Bu u[n] + (Bv–L Dvm) v[n] + L ym[v].
The estimator state is based on the current measurement of ym[n] and v[n] as well as the
optimal control action u[n] computed at the current control interval.

1-44

 getEstimator

The variables in these equations are summarized in the following table.

Symbol Description

x Controller state vector, length nx. It includes (in this sequence):

• Plant model state estimates. Dimension obtained by
conversion of MPCobj.Model.Plant to discrete LTI state-
space form (if necessary), followed by use of absorbDelay to
convert any delays to additional states.

• Input disturbance model state estimates (if any). Use the
getindist command to review the input disturbance model
structure.

• Output disturbance model state estimates (if any). Use the
getoutdist command to review the output disturbance
model structure.

• Output measurement noise states (if any) as specified by
MPCobj.Model.Noise.

The length nx is the sum of the number of states in the above
four categories.

ym Vector of measured outputs or an estimate of their true values,
length nym.

u Vector of manipulated variables, length nu.
v Vector of measured input disturbances, length nv.
[j|k] Denotes an estimate of a state or output at time tj based on data

available at time tk.
[k] Denotes a quantity known at time tk, i.e., not an estimate.
A nx-by-nx state transition matrix.
Bu nx-by-nu matrix mapping u to x.
Bv nx-by-nx matrix mapping v to x.
Cm nym-by-nx matrix mapping x to ym.
Dvm nym-by-nv matrix mapping v to ym. Note that Dum = 0 because

there can be no direct feedthrough between any manipulated
variable and any measured output.

1-45

1 Functions – Alphabetical List

Symbol Description

L nx-by-nym Kalman gain matrix for the time update. (See kalmd
in the Control System Toolbox™ documentation.) Note that L
= A*M minimizes the expected state estimation error for most
combinations of plant and disturbance models used in MPC, but
this is not true in general.

M nx-by-nym Kalman gain matrix for the measurement update.
(See kalmd in the Control System Toolbox documentation.)

• “Controller State Estimation”
• “MPC Modeling”

See Also
getindist | getoutdist | mpc | mpcstate | setEstimator

Introduced in R2014b

1-46

 getindist

getindist
Retrieve unmeasured input disturbance model

Syntax

indist = getindist(MPCobj)

[indist,channels] = getindist(MPCobj)

Description

indist = getindist(MPCobj) returns the input disturbance model, indist, used by
the model predictive controller, MPCobj.

[indist,channels] = getindist(MPCobj) also returns the input channels to which
integrated white noise has been added by default. For more information on the default
model, see “MPC Modeling”.

Examples

Retrieve Input Disturbance Model

Define a plant model with no direct feedthrough.

plant = rss(3,1,2);

plant.D = 0;

Set the first input signal as a manipulated variable and the second input as an
unmeasured disturbance.

plant = setmpcsignals(plant,'MV',[1],'UD',[2]);

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

1-47

1 Functions – Alphabetical List

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Extract the input disturbance model.

indist = getindist(MPCobj);

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #2 is integrated white noise.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Retrieve Input Disturbance Model Channels with Default Integrated White Noise

Define a plant model with no direct feedthrough.

plant = rss(3,1,3);

plant.D = 0;

Set the first input signal as a manipulated variable and the other two inputs as
unmeasured disturbances.

plant = setmpcsignals(plant,'MV',[1],'UD',[2 3]);

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Extract the default output disturbance model.

[indist,channels] = getindist(MPCobj);

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #2 is integrated white noise.

 Assuming unmeasured input disturbance #3 is white noise.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

1-48

 getindist

Check which input disturbance channels have integrated white noise added

by default.

channels

channels =

 1

An integrator has been added only to the first unmeasured input disturbance. The other
input disturbance uses a static unity gain to preserve state observability.

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

Output Arguments

indist — Input disturbance model
discrete-time, delay-free, state-space model

Input disturbance model used by the model predictive controller, MPCobj, returned as a
discrete-time, delay-free, state-space model.

The input disturbance model has:

• Unit-variance white noise input signals. By default, the number of inputs depends
upon the number of unmeasured input disturbances and the need to maintain
controller state observability. For custom input disturbance models, the number of
inputs is your choice.

• nd outputs, where nd is the number of unmeasured disturbance inputs defined in
MPCobj.Model.Plant. Each disturbance model output is sent to the corresponding
plant unmeasured disturbance input.

1-49

1 Functions – Alphabetical List

If MPCobj does not have any unmeasured disturbance, indist is returned as an empty
state-space model.

This model, in combination with the output disturbance model (if any), governs how well
the controller compensates for unmeasured disturbances and modeling errors. For more
information on the disturbance modeling in MPC and about the model used during state
estimation, see “MPC Modeling” and “Controller State Estimation”.

channels — Input channels with integrated white noise
vector of input indices

Input channels with integrated white noise added by default, returned as a vector of
input indices. If you set indist to a custom input disturbance model using setindist,
channels is empty.

More About

Tips

• To specify a custom input disturbance model, use the setindist command.

• “MPC Modeling”
• “Controller State Estimation”

See Also
getEstimator | getoutdist | mpc | setEstimator | setindist

Introduced in R2006a

1-50

 getname

getname
Retrieve I/O signal names in MPC prediction model

Syntax

name = getname(MPCobj,'input',I)

name = getname(MPCobj,'output',I)

Description

name = getname(MPCobj,'input',I) returns the name of the Ith input signal in
variable name. This is equivalent to name = MPCobj.Model.Plant.InputName{I}.
The name property is equal to the contents of the corresponding Name field of
MPCobj.DisturbanceVariables or MPCobj.ManipulatedVariables.

name = getname(MPCobj,'output',I) returns the name of the Ith output signal
in variable name. This is equivalent to name=MPCobj.Model.Plant.OutputName{I}.
The name property is equal to the contents of the corresponding Name field of
MPCobj.OutputVariables.

See Also
mpc | set | setname

Introduced before R2006a

1-51

1 Functions – Alphabetical List

getoutdist
Retrieve unmeasured output disturbance model

Syntax
outdist = getoutdist(MPCobj)

[outdist,channels] = getoutdist(MPCobj)

Description
outdist = getoutdist(MPCobj) returns the output disturbance model, outdist,
used by the model predictive controller, MPCobj.

[outdist,channels] = getoutdist(MPCobj) also returns the output channels to
which integrated white noise has been added by default. For more information on the
default model, see “MPC Modeling”.

Examples
Retrieve Output Disturbance Model

Define a plant model with no direct feedthrough, and create an MPC controller for that
plant.

plant = rss(3,2,2);

plant.D = 0;

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Extract the output disturbance model.

outdist = getoutdist(MPCobj);

-->Converting model to discrete time.

1-52

 getoutdist

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Retrieve Output Disturbance Model Channels with Default Integrated White Noise

Define a plant model with no direct feedthrough, and create an MPC controller for that
plant.

plant = rss(3,3,3);

plant.d = 0;

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Extract the default output disturbance model.

[outdist,channels] = getoutdist(MPCobj);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->Assuming output disturbance added to measured output channel #3 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Check which channels have default integrated white noise disturbances.

channels

channels =

 1 2 3

Integrators have been added to all three output channels.

Input Arguments

MPCobj — Model predictive controller
MPC controller object

1-53

1 Functions – Alphabetical List

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

Output Arguments

outdist — Output disturbance model
discrete-time, delay-free, state-space model

Output disturbance model used by the model predictive controller, MPCobj, returned as a
discrete-time, delay-free, state-space model.

The output disturbance model has:

• ny outputs, where ny is the number of plant outputs defined in
MPCobj.Model.Plant. Each disturbance model output is added to the corresponding
plant output. By default, disturbance models corresponding to unmeasured output
channels are zero.

• Unit-variance white noise input signals. By default, the number of inputs is equal to
the number of default integrators added.

This model, in combination with the input disturbance model (if any), governs how well
the controller compensates for unmeasured disturbances and modeling errors. For more
information on the disturbance modeling in MPC and about the model used during state
estimation, see “MPC Modeling” and “Controller State Estimation”.

channels — Output channels with integrated white noise
vector of output indices

Output channels with integrated white noise added by default, returned as a vector
of output indices. If you set outdist to a custom output disturbance model using
setoutdist, channels is empty.

More About

Tips

• To specify a custom output disturbance model, use the setoutdist command.

• “MPC Modeling”

1-54

 getoutdist

• “Controller State Estimation”

See Also
getEstimator | getindist | mpc | setEstimator | setoutdist

Introduced before R2006a

1-55

1 Functions – Alphabetical List

gpc2mpc
Generate MPC controller using generalized predictive controller (GPC) settings

Syntax

mpc = gpc2mpc(plant)

gpcOptions = gpc2mpc

mpc = gpc2mpc(plant,gpcOptions)

Description

mpc = gpc2mpc(plant) generates a single-input single-output MPC controller with
default GPC settings and sampling time of the plant, plant. The GPC is a nonminimal
state-space representation described in [1]. plant is a discrete-time LTI model with
sampling time greater than 0.

gpcOptions = gpc2mpc creates a structure gpcOptions containing default values of
GPC settings.

mpc = gpc2mpc(plant,gpcOptions) generates an MPC controller using the GPC
settings in gpcOptions.

Input Arguments

plant

Discrete-time LTI model with sampling time greater than 0.

Default:

gpcOptions

GPC settings, specified as a structure with the following fields.

N1 Starting interval in prediction horizon, specified as a
positive integer.
Default: 1.

1-56

 gpc2mpc

N2 Last interval in prediction horizon, specified as a positive
integer greater than N1.
Default: 10.

NU Control horizon, specified as a positive integer less than
the prediction horizon.
Default: 1.

Lam Penalty weight on changes in manipulated variable,
specified as a positive integer greater than or equal to 0.
Default: 0.

T Numerator of the GPC disturbance model, specified as
a row vector of polynomial coefficients whose roots lie
within the unit circle.
Default: [1].

MVindex Index of the manipulated variable for multi-input plants,
specified as a positive integer.
Default: 1.

Default:

Examples

Design an MPC controller using GPC settings:

% Specify the plant described in Example 1.8 of

% [1].

G = tf(9.8*[1 -0.5 6.3],conv([1 0.6565],[1 -0.2366 0.1493]));

% Discretize the plant with sample time of 0.6 seconds.

Ts = 0.6;

Gd = c2d(G, Ts);

% Create a GPC settings structure.

GPCoptions = gpc2mpc;

% Specify the GPC settings described in example 4.11 of

% [1].

% Hu

GPCoptions.NU = 2;

% Hp

1-57

1 Functions – Alphabetical List

GPCoptions.N2 = 5;

% R

GPCoptions.Lam = 0;

GPCoptions.T = [1 -0.8];

% Convert GPC to an MPC controller.

mpc = gpc2mpc(Gd, GPCoptions);

% Simulate for 50 steps with unmeasured disturbance between

% steps 26 and 28, and reference signal of 0.

SimOptions = mpcsimopt(mpc);

SimOptions.UnmeasuredDisturbance = [zeros(25,1); ...

-0.1*ones(3,1); 0];

sim(mpc, 50, 0, SimOptions);

More About

Tips

• For plants with multiple inputs, only one input is the manipulated variable, and the
remaining inputs are measured disturbances in feedforward compensation. The plant
output is the measured output of the MPC controller.

• Use the MPC controller with Model Predictive Control Toolbox™ software for
simulation and analysis of the closed-loop performance.

• “Design Controller Using MPC Designer”
• “Design MPC Controller at the Command Line”

References

[1] Maciejowski, J. M. Predictive Control with Constraints, Pearson Education Ltd., 2002,
pp. 133–142.

See Also
“MPC Controller Object” on page 3-2

Introduced in R2010a

1-58

 mpc

mpc

Create MPC controller

Syntax

MPCobj = mpc(Plant)

MPCobj = mpc(Plant,Ts)

MPCobj = mpc(Plant,Ts,p,m,W,MV,OV,DV)

MPCobj = mpc(Models,Ts,p,m,W,MV,OV,DV)

Description

MPCobj = mpc(Plant) creates a Model Predictive Controller object based on a
discrete-time prediction model. The prediction model Plant can be either an LTI model
with a specified sample time or a linear System Identification Toolbox™ model. The
controller, MPCobj, inherits its control interval from Plant.Ts, and its time unit
from Plant.TimeUnit. All other controller properties are default values. After you
create the MPC controller, you can set its properties using MPCobj.PropertyName =
PropertyValue.

MPCobj = mpc(Plant,Ts) specifies a control interval of Ts. If Plant is a discrete-time
LTI model with an unspecified sample time (Plant.Ts = –1), it inherits sample time Ts
when used for predictions.

MPCobj = mpc(Plant,Ts,p,m,W,MV,OV,DV) specifies additional controller properties
such as the prediction horizon (p), control horizon (m), and input, input increment, and
output weights (W). You can also set the properties of manipulated variables (MV), output
variables (OV), and input disturbance variables (DV). If any of these values are omitted or
empty, the default values apply.

MPCobj = mpc(Models,Ts,p,m,W,MV,OV,DV) creates a Model Predictive Controller
object based on a prediction model set, Models. This set includes plant, input
disturbance, and measurement noise models along with the nominal conditions at which
the models were obtained.

1-59

1 Functions – Alphabetical List

Input Arguments

Plant

Plant model to be used in predictions, specified as an LTI model (tf, ss, or zpk) or a
linear System Identification Toolbox model. If the Ts input argument is unspecified,
Plant must be either a discrete-time LTI object with a specified sample time or a System
Identification Toolbox model.

Unless you specify otherwise, controller design assumes that all plant inputs are
manipulated variables and all plant outputs are measured. Use the setmpcsignals
command or the LTI InputGroup and OutputGroup properties to designate other signal
types.

If you specify Plant as a linear System Identification Toolbox model, any noise channels
are discarded by default. To convert noise channels to unmeasured disturbances, first
convert the identified model to a state-space model using the 'augmented' option. For
more information on identifying plant models, see “Identify Plant from Data”.

Ts

Controller sample time (control interval), specified as a positive scalar value.

p

Prediction horizon, specified as a positive integer. The control interval, Ts, determines
the duration of each step. The default value is 10 + maximum intervals of delay (if any).

m

Control horizon, specified as a scalar integer, 1 ≤ m ≤ p, or as a vector of blocking factors
such that sum(m) ≤ p (see “Optimization Variables”). The default value is 2.

W

Controller tuning weights, specified as a structure. For details about how to specify this
structure, see “Weights” on page 1-65.

MV

Bounds and other properties of manipulated variables, specified as a 1-by-nu structure
array, where nu is the number of manipulated variables defined in the plant model. For
details about how to specify this structure, see “ManipulatedVariables” on page 1-62.

1-60

 mpc

OV

Bounds and other properties of the output variables, specified as a 1-by-ny structure
array, where ny is the number of output variables defined in the plant model. For details
about how to specify this structure, see “OutputVariables” on page 1-64.

DV

Scale factors and other properties of the disturbance inputs, specified as a 1-by-nd
structure array, where nd is the number of disturbance inputs (measured + unmeasured)
defined in the plant model. For details about how to specify this structure, see
“DisturbanceVariables” on page 1-64.

Models

Plant, input disturbance, and measurement noise models, along with the nominal
conditions at which these models were obtained, specified as a structure. For details
about how to specify this structure, see “Model” on page 1-67.

Construction and Initialization
To minimize computational overhead, Model Predictive Controller creation occurs in two
phases. The first happens at construction when you invoke the mpc command, or when
you change a controller property. Construction involves simple validity and consistency
checks, such as signal dimensions and non-negativity of weights.

The second phase is initialization, which occurs when you use the object for the first time
in a simulation or analytical procedure. Initialization computes all constant properties
required for efficient numerical performance, such as matrices defining the optimal
control problem and state estimator gains. Additional, diagnostic checks occur during
initialization, such as verification that the controller states are observable.

By default, both phases display informative messages in the command window. You can
turn these messages on or off using the mpcverbosity command.

Properties
All of the parameters defining the traditional (implicit) MPC control law are stored in an
MPC object, whose properties are listed in the following table.

MPC Controller Object

1-61

1 Functions – Alphabetical List

Property Description

ManipulatedVariables (or MV or
Manipulated or Input)

Scale factors, input bounds, input-rate
bounds, corresponding ECR values, target
values, signal names, and units.

OutputVariables (or OV or Controlled
or Output)

Scale factors, input bounds, input-rate
bounds, corresponding ECR values, target
values, signal names, and units.

DisturbanceVariables (or DV or
Disturbance)

Disturbance scale factors, names, and units

Weights Weights used in computing the
performance (cost) function

Model Plant, input disturbance, and output noise
models, and nominal conditions.

Ts Controller sample time
Optimizer Parameters controlling the QP solver
PredictionHorizon Prediction horizon
ControlHorizon Number of free control moves or vector of

blocking moves
History Creation time
Notes Text or comments about the MPC

controller object
UserData Any additional data

ManipulatedVariables

ManipulatedVariables (or MV or Manipulated or Input) is an nu-dimensional array
of structures (nu = number of manipulated variables), one per manipulated variable.
Each structure has the fields described in the following table, where p denotes the
prediction horizon. Unless indicated otherwise, numerical values are in engineering
units.

Manipulated Variable Structure

Field Name Content Default

ScaleFactor Nonnegative scale factor for this MV 1

1-62

 mpc

Field Name Content Default

Min 1 to p length vector of lower bounds on this
MV

-Inf

Max 1 to p length vector of upper bounds on this
MV

Inf

MinECR 1 to p length vector of nonnegative
parameters specifying the Min bound
softness (0 = hard).

0 (dimensionless)

MaxECR 1 to p length vector of nonnegative
parameters specifying the Max bound
softness (0 = hard).

0 (dimensionless)

Target 1 to p length vector of target values for this
MV

'nominal'

RateMin 1 to p length vector of lower bounds on the
interval-to-interval change for this MV

-Inf

RateMax 1 to p length vector of upper bounds on the
interval-to-interval change for this MV

Inf

RateMinECR 1 to p length vector of nonnegative
parameters specifying the RateMin bound
softness (0 = hard).

0 (dimensionless)

RateMaxECR 1 to p length vector of nonnegative
parameters specifying the RateMax bound
softness (0 = hard).

0 (dimensionless)

Name Read-only MV signal name (character
vector)

InputName of LTI plant
model

Units Read-only MV signal units (character
vector)

InputUnit of LTI plant
model

Note Rates refer to the difference Δu(k)=u(k)-u(k-1). Constraints and weights based on
derivatives du/dt of continuous-time input signals must be properly reformulated for the
discrete-time difference Δu(k), using the approximation du/dt ≅ Δu(k)/Ts.

1-63

1 Functions – Alphabetical List

OutputVariables

OutputVariables (or OV or Controlled or Output) is an ny-dimensional array
of structures (ny = number of outputs), one per output signal. Each structure has the
fields described in the following table. p denotes the prediction horizon. Unless specified
otherwise, values are in engineering units.

Output Variable Structure

Field Name Content Default

ScaleFactor Nonnegative scale factor for this OV 1
Min 1 to p length vector of lower bounds on this

OV
-Inf

Max 1 to p length vector of upper bounds on this
OV

Inf

MinECR 1 to p length vector of nonnegative
parameters specifying the Min bound
softness (0 = hard).

1 (dimensionless)

MaxECR 1 to p length vector of nonnegative
parameters specifying the Max bound
softness (0 = hard).

1 (dimensionless)

Name Read-only OV signal name (character vector) OutputName of LTI
plant model

Units Read-only OV signal units (character vector) OutputUnit of LTI
plant model

In order to reject constant disturbances due, for instance, to gain nonlinearities, the
default measured output disturbance model used in Model Predictive Control Toolbox
software is integrated white noise (see “Output Disturbance Model”).

DisturbanceVariables

DisturbanceVariables (or DV or Disturbance) is an (nv+nd)-dimensional array of
structures (nv = number of measured input disturbances, nd = number of unmeasured
input disturbances). Each structure has the fields described in the following table.

Disturbance Variable Structure

1-64

 mpc

Field Name Content Default

ScaleFactor Nonnegative scale factor for this DV 1
Name Read-only DV signal name (character

vector)
InputName of LTI plant
model

Units Read-only DV signal units (character
vector)

InputUnit of LTI plant
model

The order of the disturbance signals within the array DV is the following: the first nv
entries relate to measured input disturbances, the last nd entries relate to unmeasured
input disturbances.

Weights

Weights is the structure defining the QP weighting matrices. It contains four fields.
The values of these fields depend on whether you are using the standard quadratic cost
function (see “Standard Cost Function”) or the alternative cost function (see “Alternative
Cost Function”).

Standard Cost Function

The following table lists the content of the four structure fields. In the table, p denotes
the prediction horizon, nu the number of manipulated variables, and ny the number of
output variables.

For the MV, MVRate and OV weights, if you specify fewer than p rows, the last row repeats
automatically to form a matrix containing p rows.

Weights for the Standard Cost Function

Field Name (Abbreviations) Content Default (dimensionless)

ManipulatedVariables (or MV
or Manipulated or Input)

(1 to p)-by-nu dimensional array
of nonnegative MV weights

zeros(1,nu)

ManipulatedVariablesRate (or
MVRate or ManipulatedRate or
InputRate)

(1 to p)-by-nu dimensional array
of MV-increment weights

0.1*ones(1,nu)

OutputVariables (or OV or
Controlled or Output)

(1 to p)-by-ny dimensional array
of OV weights

1 (The default for output
weights is the following:
if nu≥ny, all outputs are
weighted with unit weight;

1-65

1 Functions – Alphabetical List

Field Name (Abbreviations) Content Default (dimensionless)

if nu<ny, nu outputs default
to 1, with preference given
to measured outputs, and
the rest default to 0.)

ECR Scalar weight on the slack
variable ɛ used for constraint
softening

1e5*(max weight)

Note If all MVRate weights are strictly positive, the resulting QP problem is strictly
convex. If some MVRate weights are zero, the QP Hessian could be positive semidefinite.
In order to keep the QP problem strictly convex, when the condition number of the
Hessian matrix KΔU is larger than 1012, the quantity 10*sqrt(eps) is added to each
diagonal term. See “Cost Function”.

Alternative Cost Function

You can specify off-diagonal Q and R weight matrices in the cost function. To do so,
define the fields ManipulatedVariables, ManipulatedVariablesRate, and
OutputVariables as cell arrays, each containing a single positive-semi-definite matrix
of the appropriate size. Specifically, OutputVariables must be a cell array containing
the ny-by-ny Q matrix, ManipulatedVariables must be a cell array containing the nu-
by-nu Ru matrix, and ManipulatedVariablesRate must be a cell array containing
the nu-by-nu RΔu matrix (see “Alternative Cost Function” and the mpcweightsdemo
example). You can use diagonal weight matrices for one or more of these fields. If you
omit a field, the MPC controller uses the defaults shown in the table above.

For example, you can specify off-diagonal weights, as follows

MPCobj.Weights.OutputVariables = {Q};

MPCobj.Weights.ManipulatedVariables = {Ru};

MPCobj.Weights.ManipulatedVariablesRate = {Rdu};

where Q = Q. Ru = Ru, and Rdu = RΔu are positive semidefinite matrices.

Note You cannot specify non-diagonal weights that vary at each prediction horizon step.
The same Q, Ru, and Rdu weights apply at each step.

1-66

 mpc

Model

The property Model specifies plant, input disturbance, and output noise models,
and nominal conditions, according to the model setup described in “Controller State
Estimation”. It is a 1-D structure containing the following fields.

Models Used by MPC

Field Name Content Default

Plant LTI model or identified
linear model of the plant

No default

Disturbance LTI model describing
expected unmeasured input
disturbances

[] (By default, input disturbances are
expected to be integrated white noise.
To model the signal, an integrator
with dimensionless unity gain is
added for each unmeasured input
disturbance, unless the addition
causes the controller to lose state
observability. In that case, the
disturbance is expected to be white
noise, and so, a dimensionless unity
gain is added to that channel instead.)

Noise LTI model describing
expected noise for output
measurements

[] (By default, measurement noise
is expected to be white noise with
unit variance. To model the signal, a
dimensionless unity gain is added for
each measured channel.)

Nominal Structure containing the
state, input, and output
values where Model.Plant
is linearized

The default values of the fields are
shown in the following table:

Field Description Default

X Plant state at operating
point

[]

U Plant input at operating
point, including
manipulated variables
and measured

[]

1-67

1 Functions – Alphabetical List

Field Name Content Default

Field Description Default

and unmeasured
disturbances

Y Plant output at
operating point

[]

DX For continuous-time
models, DX is the state
derivative at operating
point: DX=f(X,U). For
discrete-time models,
DX=x(k+1)-x(k)=f(X,U)-X.

[]

Note Direct feedthrough from manipulated variables to any output in Model.Plant is
not allowed. See “MPC Modeling”.

Specify input and output signal types via the InputGroup and OutputGroup properties
of Model.Plant, or, more conveniently, use the setmpcsignals command. Valid signal
types are listed in the following tables.

Input Groups in Plant Model

Name (Abbreviations) Value

ManipulatedVariables (or MV or
Manipulated or Input)

Indices of manipulated variables in
Model.Plant

MeasuredDisturbances (or MD or
Measured)

Indices of measured disturbances in
Model.Plant

UnmeasuredDisturbances (or UD or
Unmeasured)

Indices of unmeasured disturbances in
Model.Plant

Output Groups in Plant Model

Name (Abbreviations) Value

MeasuredOutputs (or MO or Measured) Indices of measured outputs in
Model.Plant

1-68

 mpc

Name (Abbreviations) Value

UnmeasuredOutputs (or UO or
Unmeasured)

Indices of unmeasured outputs in
Model.Plant

By default, all Model.Plant inputs are manipulated variables, and all outputs are
measured.

The structure Nominal contains the values (in engineering units) for states, inputs,
outputs, and state derivatives/differences at the operating point where Model.Plant
applies. This point is typically a linearization point. The fields are reported in the
following table (see also “MPC Modeling”).

Nominal Values at Operating Point

Field Description Default

X Plant state at operating point []

U Plant input at operating point, including manipulated
variables and measured and unmeasured disturbances

[]

Y Plant output at operating point []

DX For continuous-time models, DX is the state derivative
at operating point: DX=f(X,U). For discrete-time models,
DX=x(k+1)-x(k)=f(X,U)-X.

[]

Ts

Sample time of the MPC controller. By default, if Model.Plant is a discrete-time model,
Ts = Model.Plant.ts. For continuous-time plant models, specify a controller Ts. The
Ts measurement unit is inherited from Model.Plant.TimeUnit.

Optimizer

Parameters for the QP optimization.Optimizer is a structure with the following fields:

Optimizer Properties

Field Description Default

MaxIter Maximum number of iterations allowed
in the QP solver, specified as one of the
following:

'Default'

1-69

1 Functions – Alphabetical List

Field Description Default

• 'Default' — The MPC controller
automatically computes the maximum
number of QP solver iterations as:

MaxIter = ◊ + + +() +()4 p n c n n n n
y cu cr u svc

where

• p is the prediction horizon.
• c is the control horizon.
• ncy is the number of OV constraints.
• ncu is the number of MV constraints.
• ncr is the number of MV rate

constraints.
• nu is the number of MVs.
• nsv is the number of slack variables.

• Positive integer — The QP solver stops
after MaxIter iterations.

MinOutputECR Minimum value allowed for OutputMinECR
and OutputMaxECR, specified as a
nonnegative scalar. A value of 0 indicates
that hard output constraints are allowed. If
either of the OutputVariables.MinECR
or OutputVariables.MaxECR properties
of an MPC controller are less than
MinOutputECR, a warning is displayed and
the value is raised to MinOutputECR during
computation.

0

CustomSolver Flag indicating whether to use a custom
QP solver, specified as a logical value. If
CustomSolver is true, the user must
provide an mpcCustomSolver function on
the MATLAB path. For information on how

false

1-70

 mpc

Field Description Default

to define the mpcCustomSolver function,
see “Custom QP Solver”.

Note: The default MaxIter value can be very large for some controller configurations,
such as those with large prediction and control horizons. When simulating such
controllers, if the QP solver cannot find a feasible solution, the simulation can appear to
stop responding, since the solver continues searching for MaxIter iterations.

PredictionHorizon

PredictionHorizon is the integer number of prediction horizon steps. The control
interval, Ts, determines the duration of each step. The default value is 10 + maximum
intervals of delay (if any).

ControlHorizon

ControlHorizon is either a number of free control moves, or a vector of blocking moves
(see “Optimization Variables”). The default value is 2.

History

History stores the time the MPC controller was created (read only).

Notes

Notes stores text or comments as a cell array of character vectors.

UserData

Any additional data stored within the MPC controller object.

1-71

1 Functions – Alphabetical List

Examples

Create MPC Controller with Specified Prediction and Control Horizons

Create a plant model with the transfer function .

Plant = tf([1 1],[1 2 0]);

The plant is SISO, so its input must be a manipulated variable and its output must be
measured. In general, it is good practice to designate all plant signal types using either
the setmpcsignals command, or the LTI InputGroup and OutputGroup properties.

Specify a sample time for the controller.

Ts = 0.1;

Define bounds on the manipulated variable, , such that .

MV = struct('Min',-1,'Max',1);

MV contains only the upper and lower bounds on the manipulated variable. In general,
you can specify additional MV properties. When you do not specify other properties, their
default values apply.

Specify a 20-interval prediction horizon, and a 3-interval control horizon.

p = 20;

m = 3;

Create an MPC controller using the specifed values. The fifth input argument is empty,
so default tuning weights apply.

MPCobj = mpc(Plant,Ts,p,m,[],MV);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

More About
• “MPC Modeling”
• “Design MPC Controller at the Command Line”

1-72

 mpc

See Also
get | mpcprops | mpcverbosity | set | setmpcsignals

Introduced before R2006a

1-73

1 Functions – Alphabetical List

MPC Designer
Design and simulate model predictive controllers

Description
The MPC Designer app lets you design and simulate model predictive controllers in
MATLAB and Simulink.

Using this app, you can:

• Interactively design model predictive controllers and validate their performance using
simulation scenarios

• Obtain linear plant models by linearizing Simulink models (requires Simulink Control
Design™)

• Review controller designs for potential run-time stability or numerical issues
• Compare response plots for multiple model predictive controllers
• Generate Simulink models with an MPC controller and plant model
• Generate MATLAB scripts to automate MPC controller design and simulation tasks

Limitations

The following advanced MPC features are not available in the MPC Designer app:

• Explicit MPC design
• Adaptive MPC design
• Custom constraints (setconstraint)
• Terminal weight specification (setterminal)
• Custom state estimation (setEstimator)
• Sensitivity analysis (sensitivity)
• Alternative cost functions with off-diagonal weights
• Specification of initial plant and controller states for simulation
• Specification of nominal state values using mpcObj.Model.Nominal.X and

mpcObj.Model.Nominal.DX

• Updating weights, constraints, MV targets, and external MV online during
simulations

1-74

 MPC Designer

If your application requires any of these features, design your controller at the command
line, and run simulations using mpcmove and sim. You can also run simulations in
Simulink when using these features.

Open the MPC Designer App

• MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis,
click the app icon.

• MATLAB command prompt: Enter mpcDesigner.
• Simulink model editor: In the MPC Controller Block Parameters dialog box, click

Design.

Examples
• “Design Controller Using MPC Designer”
• “Design MPC Controller in Simulink”
• “Compare Multiple Controller Responses Using MPC Designer”
• “Generate MATLAB Code from MPC Designer”
• “Generate Simulink Model from MPC Designer”

Programmatic Use

mpcDesigner opens the MPC Designer app. You can then import a plant or controller
to start the design process, or open a saved design session.

mpcDesigner(plant) opens the app and creates a default MPC controller using plant
as the internal prediction model. Specify plant as an ss, tf, or zpk LTI model.

If plant is a stable, continuous-time LTI system, MPC Designer sets the controller
sample time to 0.1 Tr, where Tr is the average rise time of the plant. If plant is an
unstable, continuous-time system, MPC Designer sets the controller sample time to 1.

By default, plant input and output signals are treated as manipulated variables and
measured outputs respectively. To specify a different input/output channel configuration,
use setmpcsignals before opening MPC Designer.

1-75

1 Functions – Alphabetical List

You can also specify plant as a linear System Identification Toolbox model, such as an
idss or idtf system. The app converts the identified model to a state-space system,
discarding any noise channels. To convert noise channels to unmeasured disturbances,
convert the identified model to a state-space model using the 'augmented' option. For
more information on identifying plant models, see “Identify Plant from Data”.

mpcDesigner(MPCobj) opens the app and imports the model predictive controller
MPCobj from the MATLAB workspace. To create an MPC controller, use mpc.

mpcDesigner(MPCobjs) opens the app and imports multiple MPC controllers specified
in the cell array MPCobjs. All of the controllers in MPCobjs must have the same input/
output channel configuration.

mpcDesigner(MPCobjs,names) additionally specifies controller names when opening
the app with multiple MPC controllers. Specify names as a cell array of character vectors
with the same length as MPCobjs. Specify a unique name for each controller.

mpcDesigner(sessionFile) opens the app and loads a previously saved session.
Specify sessionFile as one of the following:

• The name of a session data file in the current working directory or on the MATLAB
path. To save session data to disk, in the MPC Designer app, on the MPC Designer

tab, click Save Session. The saved session data includes all plants, controllers,
and scenarios in the Data Browser, the current MPC structure, and the current plot
configuration.

• A previously loaded SessionData object in the MATLAB workspace. To load a
SessionData object from a session data file, at the command line, enter:

load sessionFile

See Also

Functions
mpc | sim

Introduced in R2015b

1-76

 mpcmove

mpcmove
Optimal control action

Syntax

u = mpcmove(MPCobj,x,ym,r,v)

[u,Info] = mpcmove(MPCobj,x,ym,r,v)

[u,Info] = mpcmove(MPCobj,x,ym,r,v,Options)

Description

u = mpcmove(MPCobj,x,ym,r,v) computes the optimal manipulated variable moves,
u(k), at the current time. u(k) is calculated given the current estimated extended state,
x(k), the measured plant outputs, ym(k), the output references, r(k), and the measured
disturbances, v(k), at the current time k. Call mpcmove repeatedly to simulate closed-loop
model predictive control.

[u,Info] = mpcmove(MPCobj,x,ym,r,v) returns additional information regarding
the model predictive controller in the second output argument Info.

[u,Info] = mpcmove(MPCobj,x,ym,r,v,Options) overrides default constraints
and weights settings in MPCobj with the values specified by Options, an mpcmoveopt
object. Use Options to provide run-time adjustment in constraints and weights during
the closed-loop simulation.

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

x

mpcstate object that defines the current controller state.

1-77

1 Functions – Alphabetical List

Before you begin a simulation with mpcmove, initialize the controller state using x =
mpcstate(MPCobj). Then, modify the default properties of x as appropriate.

If you are using default state estimation, mpcmove expects x to represent x[n|n-1]. The
mpcmove command updates the state values in the previous control interval with that
information. Therefore, you should not programmatically update x at all. The default
state estimator employs a steady-state Kalman filter.

If you are using custom state estimation, mpcmove expects x to represent x[n|n].
Therefore, prior to each mpcmove command, you must set x.Plant, x.Disturbance,
and x.Noise to the best estimates of these states (using the latest measurements) at the
current control interval.

ym

1-by-nym vector of current measured output values at time k, where nym is the number of
measured outputs.

If you are using custom state estimation, set ym = [].

r

Plant output reference values, specified as a p-by-ny array, where p is the prediction
horizon of MPCobj and ny is the number of outputs. Row r(i,:) defines the reference
values at step i of the prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmove duplicates
the last row to fill the p-by-ny array. If you supply exactly one row, therefore, a constant
reference applies for the entire prediction horizon.

To implement reference previewing, which can improve tracking when a reference varies
in a predictable manner, r must contain the anticipated variations, ideally for p steps.

v

Current and anticipated measured disturbances, specified as a p-by-nmd array, where
p is the prediction horizon of MPCobj and nmd is the number of measured disturbances.
Row v(i,:) defines the expected measured disturbance values at step i of the prediction
horizon.

Modeling of measured disturbances provides feedforward control action. If your plant
model does not include measured disturbances, use v = [].

1-78

 mpcmove

v must contain at least one row. If v contains fewer than p rows, mpcmove duplicates the
last row to fill the p-by-nmd array. If you supply exactly one row, therefore, a constant
measured disturbance applies for the entire prediction horizon.

To implement disturbance previewing, which can improve tracking when a disturbance
varies in a predictable manner, v must contain the anticipated variations, ideally for p
steps.

Options

Override values for selected properties of MPCobj, specified as an options object you
create with mpcmoveopt. These options apply to the current mpcmove time instant only.
Using Options yields the same result as redefining or modifying MPCobj before each
call to mpcmove, but involves considerably less overhead. Using Options is equivalent to
using an MPC Controller Simulink block in combination with optional input signals that
modify controller settings, such as MV and OV constraints.

Output Arguments

u — Optimal manipulated variable moves
row vector of length nu

Optimal manipulated variable moves, returned as a row vector of length nu, where nu is
the number of manipulated variables.

If the controller includes constraints and the QP solver fails to find a solution, u remains
at its most recent successful solution, x.LastMove.

Info

Information regarding the model predictive controller, returned as a structure containing
the following fields.

Uopt — Optimal manipulated variable adjustments

Optimal manipulated variable adjustments (moves), returned as a p+1-by-nu array,
where p is the prediction horizon of MPCobj and nu is the number of manipulated
variables.

1-79

1 Functions – Alphabetical List

The first row of Info.Uopt is identical to the output argument u, which is the
adjustment applied at the current time, k. Uopt(i,:) contains the predicted optimal
values at time k+i-1, for i = 1,...,p+1. The mpcmove command does not calculate
optimal control moves at time k+p, and therefore sets Uopt(p+1,:) to NaN.

Yopt

Predicted optimal output variable sequence, returned as a p+1-by-ny array, where p is
the prediction horizon of MPCobj and nx is the number of outputs.

The first row of Info.Yopt contains the current outputs at time k after state estimation.
Yopt(i,:) contains the predicted output values at time k+i-1, for i = 1,...,p+1.

Xopt — Optimal predicted state variable sequence

Optimal predicted state variable sequence, returned as a p+1-by-nx array, where p is the
prediction horizon of MPCobj and nx is the number of states.

The first row of Info.Xopt contains the current states at time k as determined by
state estimation. Xopt(i,:) contains the predicted state values at time k+i-1, for i =
1,...,p+1.

Topt — Time intervals

Time intervals, returned as a p+1-by-a vector. Topt(1) = 0, representing the current
time. Subsequent time steps Topt(i) are given by Ts*(i-1), where Ts = MPCobj.Ts,
the controller sampling time.

Use Topt when plotting Uopt, Xopt, or Yopt sequences.

Slack — Slack variable

Slack variable, ε, used in constraint softening, returned as 0 or a positive scalar value.

• ε = 0 — All constraints were satisfied for the entire prediction horizon.
• ε > 0 — At least one soft constraint is violated. When more than one constraint is

violated, ε represents the worst-case soft constraint violation (scaled by your ECR
values for each constraint).

See “Optimization Problem” for more information.

1-80

 mpcmove

Iterations — QP solution result

QP solution result, returned as one of the following:

• Positive integer — Number of iterations needed to solve the quadratic programming
(QP) problem that determines the optimal sequences.

• 0 — QP problem could not be solved in the allowed maximum number of iterations.
• –1 — QP problem was infeasible. A QP problem is infeasible if no solution can satisfy

all the hard constraints.
• –2 — Numerical error occurred when solving the QP problem.

QPCode — QP solution status

QP solution status, returned as one of the following:

• 'feasible' — Optimal solution was obtained (Iterations > 0)
• 'infeasible' — QP solver detected a problem with no feasible solution

(Iterations = –1) or a numerical error occurred (Iterations = –2)
• 'unreliable' — QP solver failed to converge (Iterations = 0)

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the
degree to which the controller has achieved its objectives. See “Optimization Problem” for
details.

The cost value is only meaningful when QPCode = 'feasible'.

Examples

Analyze Closed-Loop Response

Perform closed-loop simulation of a plant with one MV and one measured OV.

Define a plant model and create a model predictive controller with MV constraints.

ts = 2;

1-81

1 Functions – Alphabetical List

Plant = ss(0.8,0.5,0.25,0,ts);

MPCobj = mpc(Plant);

MPCobj.MV(1).Min = -2;

MPCobj.MV(1).Max = 2;

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Initialize an mpcstate object for simulation. Use the default state properties.

x = mpcstate(MPCobj);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Set the reference signal. There is no measured disturbance.

r = 1;

Simulate the closed-loop response by calling mpcmove iteratively.

t = [0:ts:40];

N = length(t);

y = zeros(N,1);

u = zeros(N,1);

for i = 1:N

 % simulated plant and predictive model are identical

 y(i) = 0.25*x.Plant;

 u(i) = mpcmove(MPCobj,x,y(i),r);

end

y and u store the OV and MV values.

Analyze the result.

[ts,us] = stairs(t,u);

plot(ts,us,'r-',t,y,'b--')

legend('MV','OV')

1-82

 mpcmove

Modify the MV upper bound as the simulation proceeds using an mpcmoveopt object.

MPCopt = mpcmoveopt;

MPCopt.MVMin = -2;

MPCopt.MVMax = 2;

Simulate the closed-loop response and introduce the real-time upper limit change at
eight seconds (the fifth iteration step).

x = mpcstate(MPCobj);

y = zeros(N,1);

u = zeros(N,1);

for i = 1:N

 % simulated plant and predictive model are identical

1-83

1 Functions – Alphabetical List

 y(i) = 0.25*x.Plant;

 if i == 5

 MPCopt.MVMax = 1;

 end

 u(i) = mpcmove(MPCobj,x,y(i),r,[],MPCopt);

end

Analyze the result.

[ts,us] = stairs(t,u);

plot(ts,us,'r-',t,y,'b--')

legend('MV','OV')

1-84

 mpcmove

Evaluate Scenario at Specific Time Instant

Define a plant model.

ts = 2;

Plant = ss(0.8,0.5,0.25,0,ts);

Create a model predictive controller with MV and MVRate constraints. The prediction
horizon is ten intervals. The control horizon is blocked.

MPCobj = mpc(Plant, ts, 10, [2 3 5]);

MPCobj.MV(1).Min = -2;

MPCobj.MV(1).Max = 2;

MPCobj.MV(1).RateMin = -1;

1-85

1 Functions – Alphabetical List

MPCobj.MV(1).RateMax = 1;

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Initialize an mpcstate object for simulation from a particular state.

x = mpcstate(MPCobj);

x.Plant = 2.8;

x.LastMove = 0.85;

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Compute the optimal control at current time.

y = 0.25*x.Plant;

r = 1;

[u,Info] = mpcmove(MPCobj,x,y,r);

Analyze the predicted optimal sequences.

[ts,us] = stairs(Info.Topt,Info.Uopt);

plot(ts,us,'r-',Info.Topt,Info.Yopt,'b--')

legend('MV','OV')

1-86

 mpcmove

plot ignores Info.Uopt(end) as it is NaN.

Examine the optimal cost.

Info.Cost

ans =

 0.0793

1-87

1 Functions – Alphabetical List

Alternatives

• Use sim for plant mismatch and noise simulation when not using run-time
constraints or weight changes.

• Use theMPC Designer app to interactively design and simulate model predictive
controllers.

• Use the MPC Controller block in Simulink and for code generation.

More About

Tips

• mpcmove updates x.
• If ym, r or v is specified as [], mpcmove uses the appropriate

MPCobj.Model.Nominal value instead.
• To view the predicted optimal behavior for the entire prediction horizon, plot the

appropriate sequences provided in Info.
• To determine the optimization status, check Info.Iterations and Info.QPCode.

• “Improving Control Performance with Look-Ahead (Previewing)”
• “Switching Controllers Based on Optimal Costs”
• “Understanding Control Behavior by Examining Optimal Control Sequence”

See Also
getEstimator | mpc | mpcmoveopt | mpcstate | review | setEstimator | sim

Introduced before R2006a

1-88

 mpcmoveAdaptive

mpcmoveAdaptive

Compute optimal control with prediction model updating

Syntax

u = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v)

[u,info] = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v)

[___] = mpcmoveAdaptive(___ ,opt)

Description

u = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v) computes the
optimal manipulated variable moves at the current time. This result depends on the
properties contained in the MPC controller, the controller states, an updated prediction
model, and the nominal values. The result also depends on the measured output
variables, the output references (setpoints), and the measured disturbance inputs.
mpcmoveAdaptive updates the controller state, x, when using default state estimation.
Call mpcmoveAdaptive repeatedly to simulate closed-loop model predictive control.

[u,info] = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v) returns
additional details about the solution in a structure. To view the predicted optimal
trajectory for the entire prediction horizon, plot the sequences provided in info.
To determine whether the optimal control calculation completed normally, check
info.Iterations and info.QPCode.

[___] = mpcmoveAdaptive(___ ,opt) alters selected controller settings using
options you specify with mpcmoveopt. These changes apply for the current time instant
only, enabling a command-line simulation using mpcmoveAdaptive to mimic the
Adaptive MPC Controller block in Simulink in a computationally efficient manner.

Input Arguments

MPCobj — MPC controller
MPC controller object

1-89

1 Functions – Alphabetical List

MPC controller, specified as an implicit MPC controller object. To create the MPC
controller, use the mpc command.

x — Current MPC controller state
mpcstate object

Current MPC controller state, specified as an mpcstate object.

Before you begin a simulation with mpcmoveAdaptive, initialize the controller state
using x = mpcstate(MPCobj). Then, modify the default properties of x as appropriate.

If you are using default state estimation, mpcmoveAdaptive expects x to represent x[n|
n-1]. The mpcmoveAdaptive command updates the state values in the previous control
interval with that information. Therefore, you should not programmatically update x at
all. The default state estimator employs a linear time-varying Kalman filter.

If you are using custom state estimation, mpcmoveAdaptive expects x to represent
x[n|n]. Therefore, prior to each mpcmoveAdaptive command, you must set x.Plant,
x.Disturbance, and x.Noise to the best estimates of these states (using the latest
measurements) at the current control interval.

For more information on state estimation for adaptive MPC and time-varying MPC, see
“State Estimation”.

Plant — Updated prediction model
discrete-time state-space model | model array

Updated prediction model, specified as one of the following:

• A delay-free, discrete-time state-space (ss) model. This plant is the update to
MPCobj.Model.Plant and it must:

• Have the same sample time as the controller; that is, Plant.Ts must match
MPCobj.Ts

• Have the same input and output signal configurations, such as type, order, and
dimensions

• Define the same states as the controller prediction model, MPCobj.Model.Plant
• An array of up to p+1 delay-free, discrete-time state-space models, where p is the

prediction horizon of MPCobj. Use this option to vary the controller prediction model
over the prediction horizon.

1-90

 mpcmoveAdaptive

If Plant contains fewer than p+1 models, the last model repeats for the rest of the
prediction horizon.

Tip If you use a plant other than a delay-free, discrete-time state-space model to define
the prediction model in MPCobj, you can convert it to such a model to determine the
prediction model structure.

If the
original
plant is

Then

Not a
state-
space
model

Convert it to a state-space model using ss.

A
continuous-
time
model

Convert it to a discrete-time model with the same sample time as the
controller, MPCobj.Ts, using c2d with default forward Euler discretization.

A model
with
delays

Convert the delays to states using absorbDelay.

Nominal — Updated nominal conditions
structure | structure array | []

Updated nominal conditions, specified as one of the following:

• A structure of with the following fields:

Field Description Default

X Plant state at operating point []

U Plant input at operating point, including manipulated
variables and measured and unmeasured disturbances

[]

Y Plant output at operating point []

1-91

1 Functions – Alphabetical List

Field Description Default

DX For continuous-time models, DX is the state derivative
at operating point: DX=f(X,U). For discrete-time models,
DX=x(k+1)-x(k)=f(X,U)-X.

[]

• An array of up to p+1 nominal condition structures, where p is the prediction horizon
of MPCobj. Use this option to vary controller nominal conditions over the prediction
horizon.

If Nominal contains fewer than p+1 structures, the last structure repeats for the rest
of the prediction horizon.

If Nominal is empty, [], or if a field is missing or empty, mpcmoveAdaptive uses the
corresponding MPCobj.Model.Nominal value.

ym — Current measured outputs
ro vector of length nym

Current measured outputs, specified as a row vector of length nym vector, where nym is the
number of measured outputs.

If you are using custom state estimation, ym is ignored. If you set ym = [], then
mpcmoveAdaptive uses the appropriate nominal value.

r — Plant output reference values
p-by-ny array | []

Plant output reference values, specified as a p-by-ny array, where p is the prediction
horizon of MPCobj and ny is the number of outputs. Row r(i,:) defines the reference
values at step i of the prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmoveAdaptive
duplicates the last row to fill the p-by-ny array. If you supply exactly one row, therefore, a
constant reference applies for the entire prediction horizon.

If you set r = [], then mpcmoveAdaptive uses the appropriate nominal value.

To implement reference previewing, which can improve tracking when a reference varies
in a predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
p-by-nmd array | []

1-92

 mpcmoveAdaptive

Current and anticipated measured disturbances, specified as a p-by-nmd array, where
p is the prediction horizon of MPCobj and nmd is the number of measured disturbances.
Row v(i,:) defines the expected measured disturbance values at step i of the prediction
horizon.

Modeling of measured disturbances provides feedforward control action. If your plant
model does not include measured disturbances, use v = [].

v must contain at least one row. If v contains fewer than p rows, mpcmoveAdaptive
duplicates the last row to fill the p-by-nmd array. If you supply exactly one row, therefore,
a constant measured disturbance applies for the entire prediction horizon.

If you set v = [], then mpcmoveAdaptive uses the appropriate nominal value.

To implement disturbance previewing, which can improve tracking when a disturbance
varies in a predictable manner, v must contain the anticipated variations, ideally for p
steps.

opt — Override values for selected controller properties
mpcmoveopt object

Override values for selected properties of MPCobj, specified as an options object you
create with mpcmoveopt. These options apply to the current mpcmoveAdaptive time
instant only. Using opt yields the same result as redefining or modifying MPCobj before
each call to mpcmoveAdaptive, but involves considerably less overhead. Using opt is
equivalent to using an Adaptive MPC Controller Simulink block in combination with
optional input signals that modify controller settings, such as MV and OV constraints.

Output Arguments

u — Optimal manipulated variable moves
row vector of length nu

Optimal manipulated variable moves, returned as a row vector of length nu, where nu is
the number of manipulated variables.

If the controller includes constraints and the QP solver fails to find a solution, u remains
at its most recent successful solution, x.LastMove.

info — Solution details
structure

1-93

1 Functions – Alphabetical List

Solution details, returned as a structure containing the following fields.

Uopt — Optimal manipulated variable adjustments (moves)
(p+1)-by-nu array

Optimal manipulated variable adjustments (moves), returned as a (p+1)-by-nu array,
where p is the prediction horizon of MPCobj and nu is the number of manipulated
variables.

The first row of info.Uopt is identical to the output argument u, which is the
adjustment applied at the current time, k. Uopt(i,:) contains the predicted optimal
values at time k+i-1, for i = 1,...,p+1. The mpcmoveAdaptive command does not
calculate optimal control moves at time k+p, and therefore sets Uopt(p+1,:) to NaN.

Yopt — Predicted output variable sequence
(p+1)-by-ny array

Predicted output variable sequence, returned as a (p+1)-by-ny array, where p is the
prediction horizon of MPCobj and nx is the number of outputs.

The first row of info.Yopt contains the current outputs at time k after state estimation.
Yopt(i,:) contains the predicted output values at time k+i-1, for i = 1,...,p+1.

Xopt — Predicted state variable sequence
(p+1)-by-nx array

Predicted state variable sequence, returned as a (p+1)-by-nx array, where p is the
prediction horizon of MPCobj and nx is the number of states.

The first row of info.Xopt contains the current states at time k as determined by
state estimation. Xopt(i,:) contains the predicted state values at time k+i-1, for i =
1,...,p+1.

Topt — Time intervals
column vector of length p+1

Time intervals, returned as a column vector of length p+1. Topt(1) = 0, representing
the current time. Subsequent time steps, Topt(i), are given by Ts*(i-1), where Ts =
MPCobj.Ts, the controller sampling time.

Use Topt when plotting Uopt, Xopt, or Yopt sequences.

1-94

 mpcmoveAdaptive

Slack — Slack variable
0 | positive scalar

Slack variable, ε, used in constraint softening, returned as 0 or a positive scalar value.

• ε = 0 — All constraints were satisfied for the entire prediction horizon.
• ε > 0 — At least one soft constraint is violated. When more than one constraint is

violated, ε represents the worst-case soft constraint violation (scaled by your ECR
values for each constraint).

See “Optimization Problem” for more information.

Iterations — QP solution result
positive integer | 0 | -1 | -2

QP solution result, returned as a positive integer or one of several values with specific
meanings as follows.

• Iterations > 0 — Number of iterations needed to solve the quadratic programming
(QP) problem that determines the optimal sequences.

• Iterations = 0 — QP problem could not be solved in the allowed maximum number
of iterations.

• Iterations = -1 — QP problem was infeasible. A QP problem is infeasible if no
solution can satisfy all the hard constraints.

• Iterations = -2 — Numerical error occurred when solving the QP problem.

QPCode — QP solution status
'feasible' | 'infeasible' | 'unrealiable'

QP solution status, returned as one of the following:

• 'feasible' — Optimal solution was obtained (Iterations > 0)
• 'infeasible' — QP solver detected a problem with no feasible solution

(Iterations = –1) or a numerical error occurred (Iterations = –2)
• 'unreliable' — QP solver failed to converge (Iterations = 0)

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar. The cost quantifies the degree
to which the controller has achieved its objectives. See “Optimization Problem” for
details.

1-95

1 Functions – Alphabetical List

The cost value is only meaningful when QPCode = 'feasible'.

More About

Tips

• If the prediction model is time-invariant, use mpcmove.
• Use the Adaptive MPC Controller Simulink block for simulations and code

generation.

• “Adaptive MPC”
• “Time-Varying MPC”
• “Optimization Problem”

See Also
getEstimator | mpc | mpcmove | mpcmoveopt | mpcstate | review |
setEstimator | sim

Introduced in R2014b

1-96

 mpcmoveCodeGeneration

mpcmoveCodeGeneration
Compute optimal control moves with code generation support

Syntax

[u,newStateData] = mpcmoveCodeGeneration(configData,stateData,

onlineData)

[___ ,info] = mpcmoveCodeGeneration(___)

Description

[u,newStateData] = mpcmoveCodeGeneration(configData,stateData,

onlineData) computes optimal MPC control moves and supports code generation
for deployment to real-time targets. The input data structures, generated using
getCodeGenerationData, define the MPC controller to simulate.

mpcmoveCodeGeneration does not check input arguments for correct dimensions and
data types.

[___ ,info] = mpcmoveCodeGeneration(___) returns additional information
about the optimization result, including the number of iterations and the objective
function cost.

Examples

Compute Optimal Control Moves Using Code Generation Data Structures

Create a proper plant model.

plant = rss(3,1,1);

plant.D = 0;

Specify the controller sample time.

Ts = 0.1;

Create an MPC controller.

1-97

1 Functions – Alphabetical List

mpcObj = mpc(plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Create code generation data structures.

[configData,stateData,onlineData] = getCodeGenerationData(mpcObj);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Initialize the plant states to zero to match the default states used by the MPC controller.

Run a closed-loop simulation. At each control interval, update the online data structure
and call mpcmoveCodeGeneration to compute the optimal control moves.

x = zeros(size(plant.B,1),1); % Initialize plant states to zero (|mpcObj| default).

Tsim = 20;

for i = 1:round(Tsim/Ts)+1

 % Update plant output.

 y = plant.C*x;

 % Update measured output in online data.

 onlineData.signals.ym = y;

 % Update reference signal in online data.

 onlineData.signals.ref = 1;

 % Compute control actions.

 [u,statedata] = mpcmoveCodeGeneration(configData,stateData,onlineData);

 % Update plant state.

 x = plant.A*x + plant.B*u;

end

Generate MEX function with MATLAB® Coder™, specifying configData as a constant.

func = 'mpcmoveCodeGeneration';

funcOutput = 'mpcmoveMEX';

Cfg = coder.config('mex');

Cfg.DynamicMemoryAllocation = 'off';

1-98

 mpcmoveCodeGeneration

codegen('-config',Cfg,func,'-o',funcOutput,'-args',...

 {coder.Constant(configData),stateData,onlineData});

Input Arguments

configData — MPC configuration parameters
structure

MPC configuration parameters that are constant at run time, specified as a structure
generated using getCodeGenerationData.

Note: When using codegen, configData must be defined as coder.Constant.

stateData — Controller state
structure

Controller state at run time, specified as a structure. Generate the initial state structure
using getCodeGenerationData. For subsequent control intervals, use the updated
controller state from the previous interval. In general, use the newStateData structure
directly.

If custom state estimation is enabled, you must manually update the state structure
during each control interval. For more information, see “Using Custom State
Estimation”.

onlineData — Online controller data
structure

Online controller data that you must update at run time, specified as a structure with the
following fields:

signals — Updated input and output signals
structure

Updated input and output signals, specified as a structure with the following fields:

ym — Measured outputs
vector of length nym

1-99

1 Functions – Alphabetical List

Measured outputs, specified as a vector of length nym, where ny is the number of
measured outputs.

By default,getCodeGenerationData sets ym to the nominal measured output values
from the controller.

ref — Output references
row vector of length ny | p-by-ny array

Output references, specified as a row vector of length ny, where ny is the number of
outputs.

If you are using reference signal previewing with implicit or adaptive MPC, specify a p-
by-ny array, where p is the prediction horizon.

By default,getCodeGenerationData sets ref to the nominal output values from the
controller.

md — Measured disturbances
row vector of length nmd | p-by-nmd array

Measured disturbances, specified as:

• A row vector of length nmd, where nmd is the number of measured disturbances.
• Ap-by-nmd array, if you are using signal previewing with implicit or adaptive MPC.

By default, if your controller has measured disturbances,getCodeGenerationData sets
md to the nominal measured disturbance values from the controller. Otherwise, this field
is empty and ignored by mpcmoveCodeGeneration.

mvTarget — Targets for manipulated variables
[] (default) | vector of length nmv

Targets for manipulated variables, specified as:

• A vector of length nmv, where nmv is the number of manipulated variables.
• [] to use the default targets defined in the original MPC controller.

This field is ignored when using an explicit MPC controller.

externalMV — Manipulated variables externally applied to the plant
[] (default) | vector of length nmv

1-100

 mpcmoveCodeGeneration

Manipulated variables externally applied to the plant, specified as:

• A vector of length nmv.
• [] to apply the optimal control moves to the plant.

limits — Updated input and output constraints
structure

Updated input and output constraints, specified as a structure. If you do not expect
constraints to change at run time, ignore limits. This structure contains the following
fields:

ymin — Lower bounds on output signals
column vector of length ny | []

Lower bounds on output signals, specified as a column vector of length ny.

If ymin is empty, [], the default bounds defined in the original MPC controller are used.

ymax — Upper bounds on output signals
column vector of length ny | []

Upper bounds on output signals, specified as a column vector of length ny.

If ymax is empty, [], the default bounds defined in the original MPC controller are used.

umin — Lower bounds on manipulated variables
column vector of length nmv | []

Lower bounds on manipulated variables, specified as a column vector of length nmv.

If umin is empty, [], the default bounds defined in the original MPC controller are used.

umax — Upper bounds on manipulated variables
column vector of length nmv | []

Upper bounds on manipulated variables, specified as a column vector of length nmv.

If umax is empty, [], the default bounds defined in the original MPC controller are used.

weights — Updated QP optimization weights
structure

1-101

1 Functions – Alphabetical List

Updated QP optimization weights, specified as a structure. If you do not expect tuning
weights to change at run time, ignore weights. This structure contains the following
fields:

ywt — Output weights
column vector of length ny- | []

Output weights, specified as a column vector of length ny that contains nonnegative
values.

If ywt is empty, [], the default weights defined in the original MPC controller are used.

uwt — Manipulated variable weights
column vector of length nmv | []

Manipulated variable weights, specified as a column vector of length nmv that contains
nonnegative values.

If uwt is empty, [], the default weights defined in the original MPC controller are used.

duwt — Manipulated variable rate weights
column vector of length nmv | []

Manipulated variable rate weights, specified as a column vector of length nmv that
contains nonnegative values.

If duwt is empty, [], the default weights defined in the original MPC controller are used.

ecr — Weight on slack variable used for constraint softening
nonnegative scalar | []

Weight on slack variable used for constraint softening, specified as a nonnegative scalar.

If uwt is empty, [], the default weight defined in the original MPC controller are used.

model — Updated plant and nominal values
structure

Updated plant and nominal values for adaptive MPC and time-varying MPC, specified as
a structure. model is only available if you specify isAdaptive or isLTV as true when
creating code generation data structures. This structure contains the following fields:

1-102

 mpcmoveCodeGeneration

A — State matrix of discrete-time state-space plant model
nx-by-nx array | nx-by-nx-by-(p+1) array

State matrix of discrete-time state-space plant model, specified as an:

• nx-by-nx array when using adaptive MPC,
• nx-by-nx-by-(p+1) array when using time-varying MPC,

where nx is the number of plant states.

B — Input-to-state matrix of discrete-time state-space plant model
nx-by-nu array | nx-by-nu-by-(p+1) array

Input-to-state matrix of discrete-time state-space plant model, specified as an:

• nx-by-nu array when using adaptive MPC,
• nx-by-nu-by-(p+1) array when using time-varying MPC,

where nu is the number of plant inputs.

C — State-to-output matrix of discrete-time state-space plant model
ny-by-nx array | ny-by-nx-by-(p+1) array

State-to-output matrix of discrete-time state-space plant model, specified as an:

• ny-by-nx array when using adaptive MPC.
• ny-by-nx-by-(p+1) array when using time-varying MPC.

D — Feedthrough matrix of discrete-time state-space plant model
ny-by-nu array | ny-by-nu-by-(p+1) array

Feedthrough matrix of discrete-time state-space plant model, specified as an:

• ny-by-nu array when using adaptive MPC.
• ny-by-nu-by-(p+1) array when using time-varying MPC.

Since MPC controllers do not support plants with direct feedthrough, specify D as an
array of zeros.

X — Nominal plant states
column vector of length nx | nx-by-1-by-(p+1) array

1-103

1 Functions – Alphabetical List

Nominal plant states, specified as:

• A column vector of length nx when using adaptive MPC.
• An nx-by-1-by-(p+1) array when using time-varying MPC.

U — Nominal plant inputs
column vector of length nu | nu-by-1-by-(p+1) array

Nominal plant inputs, specified as:

• A column vector of length nu when using adaptive MPC.
• An nu-by-1-by-(p+1) array when using time-varying MPC.

Y — Nominal plant outputs
column vector of length ny | ny-by-1-by-(p+1) array

Nominal plant outputs, specified as:

• A column vector of length nywhen using adaptive MPC.
• An ny-by-1-by-(p+1) array when using time-varying MPC.

DX — Nominal plant state derivatives
column vector of length nx | nx-by-1-by-(p+1) array

Nominal plant state derivatives, specified as:

• A column vector of length nx when using adaptive MPC.
• An nx-by-1-by-(p+1) array when using time-varying MPC.

Output Arguments

u — Optimal manipulated variable moves
row vector of length nu

Optimal manipulated variable moves, returned as a row vector of length nu, where nu is
the number of manipulated variables.

If the controller includes constraints and the QP solver fails to find a solution, u remains
at its most recent successful solution, x.LastMove.

1-104

 mpcmoveCodeGeneration

newStateData — Updated controller state
structure

Updated controller state, returned as a structure. For subsequent control intervals, pass
newStateData to mpcmoveCodeGeneration as stateData.

If custom state estimation is enabled, use newStateData to manually update the state
structure before the next control interval. For more information, see “Using Custom
State Estimation”.

info — Controller optimization information
structure

Controller optimization information, returned as a structure.

If you are using implicit or adaptive MPC, info contains the following fields:

Field Description

IterationsNumber of QP solver iterations
QPCode QP solver status code
Cost Objective function cost
Uopt Optimal manipulated variable adjustments
Yopt Optimal predicted output variable sequence
Xopt Optimal predicted state variable sequence
Topt Time horizon intervals
Slack Slack variable used in constraint softening

If configData.OnlyComputeCost is true, the optimal sequence information, Uopt,
Yopt, Xopt, Topt, and Slack, is not available:

For more information, see mpcmove and mpcmoveAdaptive.

If you are using explicit MPC, info contains the following fields:

Field Description

Region Region in which the optimal solution was found
ExitCodeSolution status code

1-105

1 Functions – Alphabetical List

For more information, see mpcmoveExplicit.

More About
• “Generate Code To Compute Optimal MPC Moves in MATLAB”
• “Generate Code and Deploy Controller to Real-Time Targets”

See Also
codegen | getCodeGenerationData | mpcmove | mpcmoveAdaptive |
mpcmoveExplicit

Introduced in R2016a

1-106

 mpcmoveExplicit

mpcmoveExplicit
Compute optimal control using explicit MPC

Syntax
u = mpcmoveExplicit(EMPCobj,x,ym,r,v)

[u,info] = mpcmoveExplicit(EMPCobj,x,ym,r,v)

[u,info] = mpcmoveExplicit(EMPCobj,x,ym,r,v,MVused)

Description
u = mpcmoveExplicit(EMPCobj,x,ym,r,v) computes the optimal manipulated
variable moves at the current time using an explicit model predictive control law.
This result depends on the properties contained in the explicit MPC controller and the
controller states. The result also depends on the measured output variables, the output
references (setpoints), and the measured disturbance inputs. mpcmoveExplicit updates
the controller state, x, when using default state estimation. Call mpcmoveExplicit
repeatedly to simulate closed-loop model predictive control.

[u,info] = mpcmoveExplicit(EMPCobj,x,ym,r,v) returns additional details
about the computation in a structure. To determine whether the optimal control
calculation completed normally, check the data in info.

[u,info] = mpcmoveExplicit(EMPCobj,x,ym,r,v,MVused) specifies the
manipulated variable values used in the previous mpcmoveExplicit command, allowing
a command-line simulation to mimic the Explicit MPC Controller Simulink block with
the optional external MV input signal.

Examples
• “Explicit MPC Control of a Single-Input-Single-Output Plant”

Input Arguments
EMPCobj — Explicit MPC controller
explicit MPC controller object

1-107

1 Functions – Alphabetical List

Explicit MPC controller to simulate, specified as an Explicit MPC controller object. Use
generateExplicitMPC to create an explicit MPC controller.

x — Current MPC controller state
mpcstate object

Current MPC controller state, specified as an mpcstate object.

Before you begin a simulation with mpcmoveExplicit, initialize the controller
state using x = mpcstate(EMPCobj). Then, modify the default properties of x as
appropriate.

If you are using default state estimation, mpcmoveExplicit expects x to represent x[n|
n-1]. The mpcmoveExplicit command updates the state values in the previous control
interval with that information. Therefore, you should not programmatically update x at
all. The default state estimator employs a linear time-varying Kalman filter.

If you are using custom state estimation, mpcmoveExplicit expects x to represent
x[n|n]. Therefore, prior to each mpcmoveExplicit command, you must set x.Plant,
x.Disturbance, and x.Noise to the best estimates of these states (using the latest
measurements) at the current control interval.

ym — Current measured outputs
vector

Current measured outputs, specified as a 1-by-nym vector. nym is the number of measured
outputs. If you are using custom state estimation, ym is ignored. If you set ym = [], then
mpcmoveExplicit uses the appropriate nominal value.

r — Plant output reference values
vector

Plant output reference values, specified as a vector of ny values. mpcmoveExplicit
uses a constant reference for the entire prediction horizon. In contrast to mpcmove and
mpcmoveAdaptive, mpcmoveExplicit does not support reference previewing.

If you set r = [], then mpcmoveExplicit uses the appropriate nominal value.

v — Current and anticipated measured disturbances
vector

Current and anticipated measured disturbances, specified as a vector of nmd values.
In contrast to mpcmove and mpcmoveAdaptive, mpcmoveExplicit does not support

1-108

 mpcmoveExplicit

disturbance previewing. If your plant model does not include measured disturbances, use
v = [].

MVused — Manipulated variable values from previous interval
vector

Manipulated variable values applied to the plant during the previous control interval,
specified as a vector of nu values. If this is the first mpcmoveExplicit command
in a simulation sequence, omit this argument. Otherwise, if the MVs calculated by
mpcmoveExplicit in the previous interval were overridden, set MVused to the correct
values in order to improve the controller state estimation accuracy. If you omit MVused,
mpcmoveExplicit assumes MVused = x.LastMove.

Output Arguments

u — Optimal manipulated variable moves
row vector of length nu

Optimal manipulated variable moves, returned as a row vector of length nu, where nu is
the number of manipulated variables.

If the controller includes constraints and the QP solver fails to find a solution, u remains
at its most recent successful solution, x.LastMove.

info — Explicit MPC solution status
structure

Explicit MPC solution status, returned as a structure having the following fields.

ExitCode — Solution status code
1 | 0 | –1

Solution status code, returned as one of the following values:

• 1 — Successful solution.
• 0 — Failure. One or more controller input parameters is out of range.
• –1 — Undefined. Parameters are in range but an extrapolation must be used.

Region — Region to which current controller input parameters belong
positive integer | 0

1-109

1 Functions – Alphabetical List

Region to which current controller input parameters belong, returned as either a positive
integer or 0. The integer value is the index of the polyhedron (region) to which the
current controller input parameters belong. If the solution failed, Region = 0.

More About

Tips

• Use the Explicit MPC Controller Simulink block for simulations and code
generation.

• “Explicit MPC”
• “Design Workflow for Explicit MPC”

See Also
generateExplicitMPC

Introduced in R2014b

1-110

 mpcmoveMultiple

mpcmoveMultiple

Compute gain-scheduling MPC control action at a single time instant

Syntax

u = mpcmoveMultiple(MPCArray,states,index,ym,r,v)

[u,info] = mpcmoveMultiple(MPCArray,states,index,ym,r,v)

[u,info] = mpcmoveMultiple(MPCArray,states,index,ym,r,v,opt)

Description

u = mpcmoveMultiple(MPCArray,states,index,ym,r,v) computes the optimal
manipulated variable moves at the current time using a model predictive controller
selected by index from an array of MPC controllers. This results depends upon the
properties contained in the MPC controller and the controller states. The result also
depends on the measured plant outputs, the output references (setpoints), and the
measured disturbance inputs. mpcmoveMultiple updates the controller state when
default state estimation is used. Call mpcmoveMultiple repeatedly to simulate closed-
loop model predictive control.

[u,info] = mpcmoveMultiple(MPCArray,states,index,ym,r,v) returns
additional details about the computation in a structure. To determine whether the
optimal control calculation completed normally, check the data in info.

[u,info] = mpcmoveMultiple(MPCArray,states,index,ym,r,v,opt) alters
selected controller settings using options you specify with mpcmoveopt. These changes
apply for the current time instant only, allowing a command-line simulation using
mpcmoveMultiple to mimic the Multiple MPC Controllers block in Simulink in a
computationally efficient manner.

Input Arguments

MPCArray — MPC controllers
cell array of MPC controller objects

1-111

1 Functions – Alphabetical List

MPC controllers to simulate, specified as a cell array of traditional (implicit) MPC
controller objects. Use the mpc command to create the MPC controllers.

All the controllers in MPCArray must use either default state estimation or custom state
estimation. Mismatch is not permitted.

states — Current MPC controller states
cell array of mpcstate objects

Current controller states for each MPC controller in MPCArray, specified as a cell array
of mpcstate objects.

Before you begin a simulation with mpcmoveMultiple, initialize each controller state
using x = mpcstate(MPCobj). Then, modify the default properties of each state as
appropriate.

If you are using default state estimation, mpcmoveAdaptive expects x to represent
x[n|n-1] (where x is one entry in states, the current state of one MPC controller in
MPCArray). The mpcmoveMultiple command updates the state values in the previous
control interval with that information. Therefore, you should not programmatically
update x at all. The default state estimator employs a steady-state Kalman filter.

If you are using custom state estimation, mpcmoveMultiple expects x to represent
x[n|n]. Therefore, prior to each mpcmoveMultiple command, you must set x.Plant,
x.Disturbance, and x.Noise to the best estimates of these states (using the latest
measurements) at the current control interval.

index — Index of selected controller
positive integer

Index of selected controller in the cell array MPCArray, specified as a positive integer.

ym — Current measured outputs
vector

Current measured outputs, specified as a 1-by-nym vector. nym is the number of measured
outputs. If you are using custom state estimation, ym is ignored. If you set ym = [], then
mpcmoveMultiple uses the appropriate nominal value.

r — Plant output reference values
array

1-112

 mpcmoveMultiple

Plant output reference values, specified as a p-by-ny array, where p is the prediction
horizon of the selected controller and ny is the number of outputs. Row r(i,:) defines
the reference values at step i of the prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmoveMultiple
duplicates the last row to fill the p-by-ny array. If you supply exactly one row, therefore, a
constant reference applies for the entire prediction horizon.

If you set r = [], then mpcmoveMultiple uses the appropriate nominal value.

To implement reference previewing, which can improve tracking when a reference varies
in a predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
array

Current and anticipated measured disturbances, specified as a p-by-nmd array, where
p is the prediction horizon of the selected controller and nmd is the number of measured
disturbances. Row v(i,:) defines the expected measured disturbance values at step i of
the prediction horizon.

Modeling of measured disturbances provides feedforward control action. If your plant
model does not include measured disturbances, use v = [].

v must contain at least one row. If v contains fewer than p rows, mpcmoveMultiple
duplicates the last row to fill the p-by-nmd array. If you supply exactly one row, therefore,
a constant measured disturbance applies for the entire prediction horizon.

If you set v = [], then mpcmoveMultiple uses the appropriate nominal value.

To implement disturbance previewing, which can improve tracking when a disturbance
varies in a predictable manner, v must contain the anticipated variations, ideally for p
steps.

opt — Override values for selected controller properties
mpcmoveopt object

Override values for selected properties of the selected MPC controller, specified as
an options object you create with mpcmoveopt. These options apply to the current
mpcmoveMultiple time instant only. Using opt yields the same result as redefining
or modifying the selected controller before each call to mpcmoveMultiple, but involves

1-113

1 Functions – Alphabetical List

considerably less overhead. Using opt is equivalent to using a Multiple MPC Controllers
Simulink block in combination with optional input signals that modify controller
settings, such as MV and OV constraints.

Output Arguments

u — Optimal manipulated variable moves
row vector of length nu

Optimal manipulated variable moves, returned as a row vector of length nu, where nu is
the number of manipulated variables.

If the controller includes constraints and the QP solver fails to find a solution, u remains
at its most recent successful solution, x.LastMove.

info — Solution details
structure

Solution details, returned as a structure containing the following fields.

Uopt — Optimal manipulated variable adjustments (moves)
array

Optimal manipulated variable adjustments (moves), returned as a p+1-by-nu array,
where p is the prediction horizon of the selected controller and nu is the number of
manipulated variables.

The first row of info.Uopt is identical to the output argument u, which is the
adjustment applied at the current time, k. Uopt(i,:) contains the predicted optimal
values at time k+i-1, for i = 1,...,p+1. The mpcmoveMultiple command does not
calculate optimal control moves at time k+p, and therefore sets Uopt(p+1,:) to NaN.

Yopt — Predicted output variable sequence
array

Predicted output variable sequence, returned as a p+1-by-ny array, where p is the
prediction horizon of the selected controller and nx is the number of outputs.

The first row of info.Yopt contains the current outputs at time k after state estimation.
Yopt(i,:) contains the predicted output values at time k+i-1, for i = 1,...,p+1.

1-114

 mpcmoveMultiple

Xopt — Predicted state variable sequence
array

Predicted state variable sequence, returned as a p+1-by-nx array, where p is the
prediction horizon of the selected controller and nx is the number of states.

The first row of info.Xopt contains the current states at time k as determined by
state estimation. Xopt(i,:) contains the predicted state values at time k+i-1, for i =
1,...,p+1.

Topt — Time intervals
vector

Time intervals, returned as a p+1-by-a vector. Topt(1) = 0, representing the current
time. Subsequent time steps Topt(i) are given by Ts*(i-1), where Ts = MPCobj.Ts,
the controller sampling time.

Use Topt when plotting Uopt, Xopt, or Yopt sequences.

Slack — Slack variable
0 | positive scalar

Slack variable, ε, used in constraint softening, returned as 0 or a positive scalar value.

• ε = 0 — All constraints were satisfied for the entire prediction horizon.
• ε > 0 — At least one soft constraint is violated. When more than one constraint is

violated, ε represents the worst-case soft constraint violation (scaled by your ECR
values for each constraint).

See “Optimization Problem” for more information.

Iterations — QP solution result
positive integer | 0 | –1 | –2

QP solution result, returned as a positive integer or one of several values with specific
meanings as follows.

• Iterations > 0 — Number of iterations needed to solve the quadratic programming
(QP) problem that determines the optimal sequences.

• Iterations = 0 — QP problem could not be solved in the allowed maximum number
of iterations.

1-115

1 Functions – Alphabetical List

• Iterations = –1 — QP problem was infeasible. A QP problem is infeasible if no
solution can satisfy all the hard constraints.

• Iterations = –2 — Numerical error occurred when solving the QP problem.

QPCode — QP solution status
'feasible' | 'infeasible' | 'unrealiable'

QP solution status, returned as one of the following:

• 'feasible' — Optimal solution was obtained (Iterations > 0)
• 'infeasible' — QP solver detected a problem with no feasible solution

(Iterations = –1) or a numerical error occurred (Iterations = –2)
• 'unreliable' — QP solver failed to converge (Iterations = 0)

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the
degree to which the controller has achieved its objectives. See “Optimization Problem” for
details.

The cost value is only meaningful when QPCode = 'feasible'.

More About

Tips

• Use the Multiple MPC Controllers Simulink block for simulations and code
generation.

See Also
generateExplicitMPC | getEstimator | mpcmove | mpcstate | review |
setEstimator | sim

Introduced in R2014b

1-116

 mpcmoveopt

mpcmoveopt
Options set for mpcmove and mpcmoveAdaptive

Syntax
options = mpcmoveopt

Description
options = mpcmoveopt creates an empty mpcmoveopt object. You can set one or
more of its properties using dot notation, and then use the object with mpcmove or
mpcmoveAdaptive to simulate run-time adjustment of selected controller properties,
such as tuning weights and bounds.

mpcmoveopt property dimensions must be consistent with the number of manipulated
variables (nu) and output variables (ny) defined in the controller you are simulating.

In general, if you do not specify a value for one of the mpcmoveopt properties, it defaults
to the corresponding built-in value of the simulated controller.

Output Arguments

options

Options for the mpcmove or mpcmoveAdaptive command with the following fields:

• OutputWeights — Output variable tuning weights, specified as a 1-by-ny
vector, where ny is the number of output variables. These values replace the
Weight.OutputVariables property of the controller. The weights must be
nonnegative, finite real values.

• MVWeights — Manipulated variable tuning weights, specified as a 1-by-nu vector,
where nu is the number of manipulated variables. These values replace the
Weight.ManipulatedVariables property of the controller. The weights must be
nonnegative, finite real values.

• MVRateWeights — Manipulated variable rate tuning weights, specified as a 1-by-nu
vector, where nu is the number of manipulated variables. These values replace the

1-117

1 Functions – Alphabetical List

Weight.ManipulatedVariablesRate property of the controller. The weights must
be nonnegative, finite real values.

• ECRWeight — Weight on the slack variable used for constraint softening, specified as
a finite, real scalar. This value replaces the Weight.ECR property of the controller.

• OutputMin — Lower bounds on the output variables, specified as a 1-by-ny
vector, where ny is the number of output variables. OutputMin(i) replaces the
OutputVariables(i).Min property of the controller, for i = 1,...,ny.

• OutputMax — Upper bounds on the output variables, specified as a 1-by-ny
vector, where ny is the number of output variables. OutputMax(i) replaces the
OutputVariables(i).Max property of the controller, for i = 1,...,ny.

• MVMin — Lower bounds on the manipulated variables, specified as a 1-by-nu
vector, where nu is the number of manipulated variables. MVMin(i) replaces the
ManipulatedVariables(i).Min property of the controller, for i = 1,...,nu.

• MVMax — Upper bounds on the manipulated variables, specified as a 1-by-nu
vector, where nu is the number of manipulated variables. MVMax(i) replaces the
ManipulatedVariables(i).Max property of the controller, for i = 1,...,nu.

• OnlyComputeCost — Logical value that controls whether to calculate and export the
optimal sequence.

• 0 (default) causes the controller to return the predicted optimal policy in addition
to the objective function cost value.

• 1 causes the controller to return the objective function cost only, which saves
computational effort.

• MVused — Manipulated variable values used in the plant during the previous control
interval, specified as a 1-by-nu vector. This property mimics the external MV signal
for the MPC Controller or Adaptive MPC Controller Simulink blocks. If you do not
provide an MVused value, the controller uses the LastMove property of mpcstate.

• MVTarget — Manipulated variable target values, specified as a 1-by-nu vector.
MVTarget(i) replaces the ManipulatedVariables(i).Target property of the
controller, for i = 1,...,nu.

Examples

Simulation with Varying Controller Property

Vary a manipulated variable upper bound during a simulation.

1-118

 mpcmoveopt

Define the plant, which includes a 4-second input delay. Convert to a delay-free, discrete,
state-space model using a 2-second control interval. Create the corresponding default
controller and then specify MV bounds at +/-2.

Ts = 2;

Plant = absorbDelay(c2d(ss(tf(0.8,[5 1],'InputDelay',4)),Ts));

MPCobj = mpc(Plant,Ts);

MPCobj.MV(1).Min = -2;

MPCobj.MV(1).Max = 2;

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Create an empty mpcmoveopt object. During simulation, you can set properties of the
object to specify controller parameters.

options = mpcmoveopt;

Pre-allocate storage and initialize the controller state.

v = [];

t = [0:Ts:20];

N = length(t);

y = zeros(N,1);

u = zeros(N,1);

x = mpcstate(MPCobj);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Use mpcmove to simulate the following:

• Reference (setpoint) step change from initial condition r = 0 to r = 1 (servo response).
• MV upper bound step decrease from 2 to 1, occurring at t = 10.

r = 1;

for i = 1:N

 y(i) = Plant.C*x.Plant;

 if t(i) >= 10

 options.MVMax = 1;

 end

1-119

1 Functions – Alphabetical List

 [u(i),Info] = mpcmove(MPCobj,x,y(i),r,v,options);

end

As the loop executes, the value of options.MVMax is reset to 1 for all iterations that
occur after t = 10. Prior to that iteration, options.MVMax is empty. Therefore, the
controller's value for MVMax is used, MPCobj.MV(1).Max = 2.

Plot the results of the simulation.

[Ts,us] = stairs(t,u);

plot(Ts,us,'b-',t,y,'r-')

legend('MV','OV')

xlabel(sprintf('Time, %s',Plant.TimeUnit))

1-120

 mpcmoveopt

From the plot, you can observe that the original MV upper bound is active until t =
4. After the input delay of 4 seconds, the output variable (OV) moves smoothly to its
new target of r = 1. reaching the target at t = 10. The new MV bound imposed at t = 10
becomes avtive immediately. This forces the OV below its target, after the input delay
elapses.

Now assume that you want to impose an OV upper bound at a specified location relative
to the OV target. Consider the following constraint design command:

MPCobj.OV(1).Max = [Inf,Inf,0.4,0.3,0.2];

This is a horizon-varying constraint. The known input delay makes it impossible for
the controller to satisfy an OV constraint prior to the third prediction-horizon step.
Therefore, a finite constraint during the first two steps would be poor practice. For
illustrative purposes, the above constraint also decreases from 0.4 at step 3 to 0.2 at step
5 and thereafter.

The following commands produce the same results shown in the previous plot. The OV
constraint is never active because it is being varied in concert with the setpoint, r.

x = mpcstate(MPCobj);

OPTobj = mpcmoveopt;

for i = 1:N

 y(i) = Plant.C*x.Plant;

 if t(i) >= 10

 OPTobj.MVMax = 1;

 end

 OPTobj.OutputMax = r + 0.4;

 [u(i),Info] = mpcmove(MPCobj,x,y(i),r,v,OPTobj);

end

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

The scalar value r + 0.4 replaces the first finite value in the MPCobj.OV(1).Max vector,
and the remaining finite values adjust to maintain the original profile, i.e., the numerical
difference between these values is unchanged. r = 1 for the simulation, so the above use
of the mpcmoveopt object is equivalent to the command

MPCobj.OV(1).Max = [Inf, Inf, 1.4, 1.3, 1.2];

1-121

1 Functions – Alphabetical List

The use of the mpcmoveopt object involves much less computational overhead, however.

Alternatives

The mpcmoveopt object is an optional feature of the mpcmove and mpcmoveAdaptive
commands. The alternative is to redefine the controller and/or state object before each
command invocation, which involves considerable overhead.

More About

Tips

• mpcmoveopt cannot constrain a variable that was unconstrained in the controller
creation step. The controller ignores any such specifications. Similarly, you cannot
eliminate a constraint defined during controller creation, but you can change it to a
very large (or small) value such that it is unlikely to become active.

• If the controller design includes a vector constraint, the run-time mpcmoveopt
value replaces the first finite entry, and the remaining values shift to retain the
same constraint profile. See “Simulation with Varying Controller Property” on page
1-118.

See Also
mpc | mpcmove | setconstraint | setterminal

Introduced in R2011b

1-122

 mpcprops

mpcprops
Provide help on MPC controller properties

Syntax

mpcprops

Description

mpcprops displays details on the generic properties of MPC controllers. It provides a
complete list of all the fields of MPC objects with a brief description of each field and the
corresponding default values.

See Also
set | get

Introduced before R2006a

1-123

1 Functions – Alphabetical List

mpcqpsolver

Solve a quadratic programming problem using the KWIK algorithm

Syntax

[x,status] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,options)

[x,status,iA,lambda] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,options)

Description

[x,status] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,options) finds an
optimal solution, x, to a quadratic programming problem by minimizing the objective
function:

J fx Hx x= +
1

2

œ œ

subject to inequality constraints Ax b≥ , and equality constraints A x beq eq= . status
indicates the validity of x.

[x,status,iA,lambda] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,options)

also returns the active inequalities, iA, at the solution, and the Lagrange multipliers,
lambda, for the solution.

Examples

Solve Quadratic Programming Problem

Find the values of x that minimize

1-124

 mpcqpsolver

subject to the constraints

Specify the Hessian and linear multiplier vector for the objective function.

H = [1 -1; -1 2];

f = [-2; -6];

Specify the ineqaulity constraint parameters.

A = [1 0; 0 1; -1 -1; 1 -2; -2 -1];

b = [0; 0; -2; -2; -3];

Define Aeq and beq to indicate that there are no equality constraints.

Aeq = [];

beq = zeros(0,1);

Find the lower-triangular Cholesky decomposition of H.

[L,p] = chol(H,'lower');

Linv = inv(L);

It is good practice to verify that H is positive definite by checking if p = 0.

p

p =

 0

Create a default option set for mpcqpsolver.

opt = mpcqpsolverOptions;

To cold start the solver, define all inequality constraints as inactive.

1-125

1 Functions – Alphabetical List

iA0 = false(size(b));

Solve the QP problem.

[x,status] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,opt);

Examine the solution, x.

x

x =

 0.6667

 1.3333

Check Active Inequality Constraints for QP Solution

Find the values of x that minimize

subject to the constraints

Specify the Hessian and linear multiplier vector for the objective function.

H = [6 -2; -2 1];

f = [-3; 4];

Specify the ineqaulity constraint parameters.

A = [1 0; -1 -1; -1 -2];

b = [0; -5; -7];

Define Aeq and beq to indicate that there are no equality constraints.

Aeq = [];

beq = zeros(0,1);

1-126

 mpcqpsolver

Find the lower-triangular Cholesky decomposition of H.

[L,p] = chol(H,'lower');

Linv = inv(L);

Verify that H is positive definite by checking if p = 0.

p

p =

 0

Create a default option set for mpcqpsolver.

opt = mpcqpsolverOptions;

To cold start the solver, define all inequality constraints as inactive.

iA0 = false(size(b));

Solve the QP problem.

[x,status,iA,lambda] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,opt);

Check the active inequality constraints. An active inequality constraint is at equality for
the optimal solution.

iA

iA =

 3×1 logical array

 1

 0

 0

There is a single active inequality constraint.

View the Lagrange multiplier for this constraint.

1-127

1 Functions – Alphabetical List

lambda.ineqlin(1)

ans =

 5.0000

• “Solve Custom MPC Quadratic Programming Problem and Generate Code”

Input Arguments

Linv — Inverse of lower-triangular Cholesky decomposition of Hessian matrix
n-by-n matrix

Inverse of lower-triangular Cholesky decomposition of Hessian matrix, specified as an
n-by-n matrix, where n > 0 is the number of optimization variables. For a given Hessian
matrix, H, Linv can be computed as follows:

[L,p] = chol(H,'lower');

Linv = inv(L);

H is an n-by-n matrix, which must be symmetric and positive definite. If p>0, then H is
positive definite.

Note: The KWIK algorithm requires the computation of Linv instead of using H directly,
as in the quadprog command.

f — Multiplier of objective function linear term
column vector

Multiplier of objective function linear term, specified as a column vector of length n.

A — Linear inequality constraint coefficients
m-by-n matrix | []

Linear inequality constraint coefficients, specified as an m-by-n matrix, where m is the
number of inequality constraints.

If your problem has no inequality constraints, use [].

1-128

 mpcqpsolver

b — Right-hand side of inequality constraints
column vector of length m

Right-hand side of inequality constraints, specified as a column vector of length m.

If your problem has no inequality constraints, use zeros(0,1).

Aeq — Linear equality constraint coefficients
q-by-n matrix | []

Linear equality constraint coefficients, specified as a q-by-n matrix, where q is the
number of equality constraints, and q <= n. Equality constraints must be linearly
independent with rank(Aeq) = q.

If your problem has no equality constraints, use [].

beq — Right-hand side of equality constraints
column vector of length q

Right-hand side of equality constraints, specified as a column vector of length q.

If your problem has no equality constraints, use zeros(0,1).

iA0 — Initial active inequalities
logical vector of length m

Initial active inequalities, where the equal portion of the inequality is true, specified as a
logical vector of length m according to the following:

• If your problem has no inequality constraints, use false(0,1).
• For a cold start, false(m,1).
• For a warm start, set iA0(i) == true to start the algorithm with the ith inequality

constraint active. Use the optional output argument iA from a previous solution to
specify iA0 in this way. If both iA0(i) and iA0(j) are true, then rows i and j of A
should be linearly independent. Otherwise, the solution can fail with status = -2.

options — Option set for mpcqpsolver
structure

Option set for mpcqpsolver, specified as a structure created using
mpcqpsolverOptions.

1-129

1 Functions – Alphabetical List

Output Arguments

x — Optimal solution to the QP problem
column vector

Optimal solution to the QP problem, returned as a column vector of length n.
mpcqpsolver always returns a value for x. To determine whether the solution is optimal
or feasible, check the solution status.

status — Solution validity indicator
positive integer | 0 | -1 | -2

Solution validity indicator, returned as an integer according to the following:

Value Description

> 0 x is optimal. status represents the number of iterations performed during
optimization.

0 The maximum number of iterations was reached. The solution, x, may be
suboptimal or infeasible.

-1 The problem appears to be infeasible, that is, the constraint Ax b≥ cannot be
satisfied.

-2 An unrecoverable numerical error occurred.

iA — Active inequalities
logical vector of length m

Active inequalities, where the equal portion of the inequality is true, returned as a logical
vector of length m. If iA(i) == true, then the ith inequality is active for the solution x.

Use iA to warm start a subsequent mpcqpsolver solution.

lambda — Lagrange multipliers
structure

Lagrange multipliers, returned as a structure with the following fields:

Field Description

ineqlinMultipliers of the inequality constraints, returned as a vector of length n.
When the solution is optimal, the elements of ineqlin are nonnegative.

1-130

 mpcqpsolver

Field Description

eqlin Multipliers of the equality constraints, returned as a vector of length q. There
are no sign restrictions in the optimal solution.

More About
Tips

• The KWIK algorithm requires that the Hessian matrix, H, be positive definite. When
calculating Linv, use:

[L, p] = chol(H,'lower');

If p = 0, then H is positive definite. Otherwise, p is a positive integer.
• mpcqpsolver provides access to the QP solver used by Model Predictive Control

Toolbox software. Use this command to solve QP problems in your own custom MPC
applications. For an example of a custom MPC application using mpcqpsolver, see
“Solve Custom MPC Quadratic Programming Problem and Generate Code”.

• You can also use mpcqpsolver as a general-purpose QP solver that supports code
generation. Create a function, 'myCode', that uses mpcqpsolver.

function [out1,out2] = myCode(in1,in2)

%#codegen

...

[x,status] = mpcqpsolver(Linv,f,A,b,Aeq,Beq,iA0,options);

...

Generate C code with MATLAB Coder™.

func = 'myCode';

cfg = coder.config('mex'); % or 'lib', 'dll'

codegen('-config',cfg,func,'-o',func);

When using mpcqpsolver for code generation, use the same precision for all real
inputs, including options. Configure the precision as 'double' or 'single' using
mpcqpsolverOptions.

Algorithms

mpcqpsolver solves the QP problem using an active-set method, the KWIK algorithm,
based on [1]. For more information, see “QP Solver”.

1-131

1 Functions – Alphabetical List

The KWIK algorithm defines inequality constraints as Ax b≥ rather than Ax b£ , as in
the quadprog command.
• “QP Solver”

References

[1] Schmid, C., and L. T. Biegler. “Quadratic programming methods for reduced Hessian
SQP.” Computers & Chemical Engineering. Vol. 18, No. 9, 1994, pp. 817–832.

See Also
mpcqpsolverOptions | quadprog

Introduced in R2015b

1-132

 mpcqpsolverOptions

mpcqpsolverOptions

Create default option set for mpcqpsolver

Syntax

options = mpcqpsolverOptions

options = mpcqpsolverOptions(type)

Description

options = mpcqpsolverOptions creates a structure of default options for
mpcqpsolver, which solves a quadratic programming (QP) problem using the KWIK
algorithm.

options = mpcqpsolverOptions(type) creates a default option set using the
specified input data type. All real options are specified using this data type.

Examples

Create Default Option Set for MPC QP Solver

opt = mpcqpsolverOptions;

Create and Modify Default MPC QP Solver Option Set

Create default option set.

opt = mpcqpsolverOptions;

Specify the maximum number of iterations allowed during computation.

opt.MaxIter = 100;

Specify a feasibility tolerance for verifying that the optimal solution satisfies the
inequality constraints.

1-133

1 Functions – Alphabetical List

opt.FeasibilityTol = 1.0e-3;

Create Option Set Specifying Input Argument Type

opt = mpcqpsolverOptions('single');

Input Arguments

type — MPC QP solver input argument data type
'double' (default) | 'single'

MPC QP solver input argument data type, specified as either 'double' or 'single'.
This data type is used for both simulation and code generation. All real options in
the option set are specified using this data type, and all real input arguments to
mpcqpsolver must match this type.

Output Arguments

options — Option set for mpcqpsolver
structure

Option set for mpcqpsolver, returned as a structure with the following fields:

Field Description Default

DataType Input argument data type, specified as either 'double' or
'single'. This data type is used for both simulation and code
generation, and all real input arguments to mpcqpsolver must
match this type.

'double'

MaxIter Maximum number of iterations allowed when computing the QP
solution, specified as a positive integer.

200

FeasibilityTolTolerance used to verify that inequality constraints are satisfied
by the optimal solution, specified as a positive scalar. A larger
FeasibilityTol value allows for larger constraint violations.

1.0e-6

IntegrityChecksIndicator of whether integrity checks are performed on the
mpcqpsolver input data, specified as a logical value. If
IntegrityChecks is true, then integrity checks are performed
and diagnostic messages are displayed. Use false for code
generation only.

true

1-134

 mpcqpsolverOptions

See Also
mpcqpsolver

Introduced in R2015b

1-135

1 Functions – Alphabetical List

mpcsimopt
MPC simulation options

Syntax

options = mpcsimopt(MPCobj)

Description

options = mpcsimopt(MPCobj) creates an set of options for specifying additional
parameters for simulating an mpc controller, MPCobj, with sim. Initially, options is
empty. Use dot notation to change the options as needed for the simulation.

Output Arguments

options

Options for simulating an mpc controller using sim. options has the following
properties.

MPC Simulation Options Properties

Property Description

PlantInitialState Initial state vector of the plant model generating the
data.

ControllerInitialState Initial condition of the MPC controller. This must be
a valid mpcstate object.

Note Nonzero values of
ControllerInitialState.LastMove are
only meaningful if there are constraints on the
increments of the manipulated variables.

UnmeasuredDisturbance Unmeasured disturbance signal entering the plant.

1-136

 mpcsimopt

Property Description

An array with as many rows as simulation steps,
and as many columns as unmeasured disturbances.
Default: 0

InputNoise Noise on manipulated variables.

An array with as many rows as simulation steps,
and as many columns as manipulated variables. The
last sample of the array is extended constantly over
the horizon to obtain the correct size. Default: 0

OutputNoise Noise on measured outputs.

An array with as many rows as simulation steps,
and as many columns as measured outputs. The last
sample of the array is extended constantly over the
horizon to obtain the correct size. Default: 0

RefLookAhead Preview on reference signal ('on' or 'off').
Default: 'off'

MDLookAhead Preview on measured disturbance signal ('on' or
'off').

Constraints Use MPC constraints ('on' or 'off'). Default:
'on'

Model Model used in simulation for generating the data.

This property is useful for simulating the MPC
controller under model mismatch. The LTI object
specified in Model can be either a replacement for
Model.Plant, or a structure with fields Plant
and Nominal. By default, Model is equal to
MPCobj.Model (no model mismatch). If Model is
specified, then PlantInitialState refers to the
initial state of Model.Plant and is defaulted to
Model.Nominal.x.

If Model.Nominal is empty, Model.Nominal.U
and Model.Nominal.Y are inherited from
MPCobj.Model.Nominal. Model.Nominal.X/

1-137

1 Functions – Alphabetical List

Property Description

DX is only inherited if both plants are state-space
objects with the same state dimension.

StatusBar Display the wait bar ('on' or 'off'). Default:
'off'

MVSignal Sequence of manipulated variables (with offsets) for
open-loop simulation (no MPC action).

An array with as many rows as simulation steps,
and as many columns as manipulated variables.
Default: 0

OpenLoop Perform open-loop simulation ('on' or 'off').
Default: 'off'

Examples

Simulate MPC Control with Plant Model Mismatch

Simulate the MPC control of a multi-input, multi-output (MIMO) system with a
mismatch between the predicted and actual plant models. The system has two
manipulated variables, two unmeasured disturbances, and two measured outputs.

Define the predicted plant model.

p1 = tf(1,[1 2 1])*[1 1;0 1];

plantPredict = ss([p1 p1]);

plantPredict.InputName = {'mv1','mv2','umd3','umd4'};

Specify the MPC signal types.

plantPredict = setmpcsignals(plantPredict,'MV',[1 2],'UD',[3 4]);

Create the MPC controller.

mpcobj = mpc(plantPredict,1,40,2);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

1-138

 mpcsimopt

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define the unmeasured input disturbance model used by the controller.

distModel = eye(2,2)*ss(-0.5,1,1,0);

mpcobj.Model.Disturbance = distModel;

Define an actual plant model which differs from the predicted model and has unforeseen
unmeasured disturbance inputs.

p2 = tf(1.5,[0.1 1 2 1])*[1 1;0 1];

plantActual = ss([p2 p2 tf(1,[1 1])*[0;1]]);

plantActual = setmpcsignals(plantActual,'MV',[1 2],'UD',[3 4 5]);

Configure the unmeasured disturbance and output reference trajectories.

dist = ones(1,3);

refs = [1 2];

Create and configure a simulation option set.

options = mpcsimopt(mpcobj);

options.UnmeasuredDisturbance = dist;

options.Model = plantActual;

Simulate the system.

sim(mpcobj,20,refs,options)

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

-->Converting model to discrete time.

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

1-139

1 Functions – Alphabetical List

1-140

 mpcsimopt

• “Simulate Controller with Nonlinear Plant”

See Also
sim

Introduced before R2006a

1-141

1 Functions – Alphabetical List

mpcstate
Define MPC controller state

Syntax
xmpc = mpcstate(MPCobj)

xmpc = mpcstate(MPCobj,xp,xd,xn,u,p)

xmpc = mpcstate

Description
xmpc = mpcstate(MPCobj) creates a controller state object compatible with the
controller object, MPCobj, in which all fields are set to their default values that are
associated with the controller’s nominal operating point.

xmpc = mpcstate(MPCobj,xp,xd,xn,u,p) sets the state fields of the controller state
object to specified values. The controller may be an implicit or explicit controller object.
Use this controller state object to initialize an MPC controller at a specific state other
than the default state.

xmpc = mpcstate returns an mpcstate object in which all fields are empty.

mpcstate objects are updated by mpcmove through the internal state observer based on
the extended prediction model. The overall state is updated from the measured output
ym(k) by a linear state observer (see “State Observer”).

Input Arguments

MPCobj

MPC controller, specified as either a traditional MPC controller (mpc) or explicit MPC
controller (generateExplicitMPC).

xp

Plant model state estimates, specified as a vector with Nxp elements, where Nxp is the
number of states in the plant model.

1-142

 mpcstate

xd

Disturbance model state estimates, specified as a vector with Nxd elements, where Nxd is
the total number of states in the input and output disturbance models. The disturbance
model states are ordered such that input disturbance model states are followed by output
disturbance model state estimates.

xn

Measurement noise model state estimates, specified as a vector with Nxn elements, where
Nxn is the number of states in the measurement noise model.

u

Values of the manipulated variables during the previous control interval, specified as a
vector with Nu elements, where Nu is the number of manipulated variables.

p

Covariance matrix for the state estimates, specified as an N-by-N matrix, where N is the
sum of Nxp, Nxd and Nxn).

Output Arguments

xmpc

MPC state object, containing the following properties.

Property Description

Plant Vector of state estimates for the controller’s plant model. Values
are in engineering units and are absolute, i.e., they include
state offsets.

If the controller’s plant model includes delays, the Plant field
of the MPC state object includes states that model the delays.
Therefore length(Plant) > order of undelayed controller
plant model.

Default: controller’s Model.Nominal.X property.

1-143

1 Functions – Alphabetical List

Property Description

Disturbance Vector of unmeasured disturbance model state estimates. This
comprises the states of the input disturbance model followed by
the states of the output disturbances model.

Disturbance models may be created by default. Use the
getindistand getoutdistcommands to view the two
disturbance model structures.

Default: zero, or empty if there are no disturbance model states.
Noise Vector of output measurement noise model state estimates.

Default: zero, or empty if there are no noise model states.
LastMove Vector of manipulated variables used in the previous control

interval, u(k–1). Values are absolute, i.e., they include
manipulated variable offsets.

Default: nominal values of the manipulated variables.
Covariance n-by-n symmetrical covariance matrix for the controller state

estimates, where n is the dimension of the extended controller
state, i.e., the sum of the number states contained in the Plant,
Disturbance, and Noise fields.

Default: If the controller is employing default state estimation
the default is the steady-state covariance computed according
to the assumptions in “Controller State Estimation”. See also
the description of the P matrix in the Control System Toolbox
kalmd command. If the controller is employing custom state
estimation, this field is empty (not used).

Examples

Get Controller State Object

Create a Model Predictive Controller for a single-input-single-output (SISO) plant. For
this example, the plant includes an input delay of 0.4 time units, and the control interval
to 0.2 time units.

1-144

 mpcstate

H = tf(1,[10 1],'InputDelay',0.4);

MPCobj = mpc(H,0.2);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Create the corresponding controller state object in which all states are at their default
values.

xMPC = mpcstate(MPCobj)

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

-->Converting delays to states.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

MPCSTATE object with fields

 Plant: [0 0 0]

 Disturbance: 0

 Noise: [1×0 double]

 LastMove: 0

 Covariance: [4×4 double]

The plant model, H, is a first-order, continuous-time transfer function. The Plant
property of the mpcstate object contains two additional states to model the two intervals
of delay. Also, by default the controller contains a first-order output disturbance model
(an integrator) and an empty measured output noise model.

View the default covariance matrix.

xMPC.Covariance

ans =

 0.0624 0.0000 0.0000 -0.0224

 0.0000 1.0000 0.0000 -0.0000

 0.0000 0.0000 1.0000 -0.0000

 -0.0224 -0.0000 -0.0000 0.2301

1-145

1 Functions – Alphabetical List

See Also
getoutdist | setindist | setoutdist | getEstimator | setEstimator | ss |
mpcmove

Introduced before R2006a

1-146

 mpcverbosity

mpcverbosity
Change toolbox verbosity level

Syntax

mpcverbosity on

mpcverbosity off

old_status = mpcverbosity(new_status)

mpcverbosity

Description

mpcverbosity on enables messages displaying default operations taken by Model
Predictive Control Toolbox software during the creation and manipulation of model
predictive control objects.

mpcverbosity off turns messages off.

old_status = mpcverbosity(new_status) sets the verbosity level to the specified
value, new_status. The function returns the original value of the verbosity level as
old_status. Specify new_status as either 'on' or 'off' .

mpcverbosity just shows the verbosity status.

By default, messages are turned on.

See also “Construction and Initialization” on page 3-12 .

See Also
mpc

Introduced before R2006a

1-147

1 Functions – Alphabetical List

plot
Plot responses generated by MPC simulations

Syntax

plot(MPCobj,t,y,r,u,v,d)

Description

plot(MPCobj,t,y,r,u,v,d) plots the results of a simulation based on the MPC object
MPCobj. t is a vector of length Nt of time values, y is a matrix of output responses of
size [Nt,Ny] where Ny is the number of outputs, r is a matrix of setpoints and has the
same size as y, u is a matrix of manipulated variable inputs of size [Nt,Nu] where Nu is
the number of manipulated variables, v is a matrix of measured disturbance inputs of
size [Nt,Nv] where Nv is the number of measured disturbance inputs, and d is a matrix
of unmeasured disturbance inputs of size [Nt,Nd] where Nd is the number of unmeasured
disturbances input.

See Also
sim | mpc

Introduced before R2006a

1-148

 plotSection

plotSection
Visualize explicit MPC control law as 2-D sectional plot

Syntax

plotsection(EMPCobj,plotParams)

Description

plotsection(EMPCobj,plotParams) displays a 2-D sectional plot of the piecewise
affine regions used by an explicit MPC controller. All but two of the control law’s free
parameters are fixed, as specified by plotParams. The two remaining variables form the
plot axes. By default, the EMPCobj.Range property sets the bounds for these axes.

Examples

Specify Fixed Parameters for 2-D Plot of Explicit Control Law

Define a double integrator plant model and create a traditional implicit MPC controller
for this plant. Constrain the manipulated variable to have an absolute value less than 1.

plant = tf(1,[1 0 0]);

MPCobj = mpc(plant,0.1,10,3);

MPCobj.MV = struct('Min',-1,'Max',1);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define the parameter bounds for generating an explicit MPC controller.

range = generateExplicitRange(MPCobj);

range.State.Min(:) = [-10;-10];

range.State.Max(:) = [10;10];

range.Reference.Min(:) = -2;

range.Reference.Max(:) = 2;

range.ManipulatedVariable.Min(:) = -1.1;

range.ManipulatedVariable.Max(:) = 1.1;

1-149

1 Functions – Alphabetical List

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Create an explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range);

Regions found / unexplored: 19/ 0

Create a default plot parameter structure, which specifies that all of the controller
parameters are fixed at their nominal values for plotting.

plotParams = generatePlotParameters(EMPCobj);

Allow the controller states to vary when creating a plot.

plotParams.State.Index = [];

plotParams.State.Value = [];

Fix the manipulated variable and reference signal to 0 for plotting.

plotParams.ManipulatedVariable.Index(1) = 1;

plotParams.ManipulatedVariable.Value(1) = 0;

plotParams.Reference.Index(1) = 1;

plotParams.Reference.Value(1) = 0;

Generate the 2-D section plot for the explicit MPC controller.

plotSection(EMPCobj,plotParams)

ans =

 Figure (1: PiecewiseAffineSectionPlot) with properties:

 Number: 1

 Name: 'PiecewiseAffineSectionPlot'

 Color: [0.9400 0.9400 0.9400]

 Position: [360 502 560 420]

 Units: 'pixels'

1-150

 plotSection

 Use GET to show all properties

Input Arguments

EMPCobj — Explicit MPC controller
explicit MPC controller object

Explicit MPC controller for which you want to create a 2-D sectional plot, specified as an
Explicit MPC controller object. Use generateExplicitMPC to create an explicit MPC
controller.

1-151

1 Functions – Alphabetical List

plotParams — Parameters for sectional plot
structure

Parameters for sectional plot of explicit MPC control law, specified as a structure. Use
generatePlotParameters to create an initial structure in which all the parameters of
the controller are fixed at their nominal values. Then, modify this structure as necessary
before invoking plotSection. See generatePlotParameters for more information.

See Also
generateExplicitMPC | generatePlotParameters

Introduced in R2014b

1-152

 review

review

Examine MPC controller for design errors and stability problems at run time

Syntax

review(mpcobj)

Description

review(mpcobj) checks for potential design issues in the model predictive controller,
mpcobj, and generates a report. review performs the following diagnostic tests:

• Is the optimal control problem well defined?
• Is the controller internally stable?
• Is the closed loop system stable when no constraints are active and there is no model

mismatch?
• Is the controller able to eliminate steady-state tracking error when no constraints are

active?
• Is there a likelihood that constraint definitions will result in an ill-conditioned or

infeasible optimization problem?
• If the controller were used in a real-time environment, what memory capacity would

be needed?

Use review iteratively to check your initial MPC design or whenever you make
substantial changes to your controller. Make the recommended changes to your controller
to eliminate potential problems. review does not modify mpcobj.

Input Arguments

mpcobj

Non-empty Model Predictive Controller (mpc) object

1-153

1 Functions – Alphabetical List

Examples

Examine MPC Controller for Design Errors or Stability Problems

Define a plant model and create an MPC controller.

plant = tf(1, [10 1]);

Ts = 2;

MPCobj = mpc(plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set hard upper and lower bounds on the manipulated variable and its rate-of-change.

MV = MPCobj.MV;

MV.Min = -2;

MV.Max = 2;

MV.RateMin = -4;

MV.RateMax = 4;

MPCobj.MV = MV;

Review the controller design.

review(MPCobj)

-->Converting the "Model.Plant" property of "mpc" object to state-space.

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

1-154

 review

1-155

1 Functions – Alphabetical List

review flags the potential constraint conflict that could result if this controller was used
to control a real process.

1-156

 review

Alternatives
review automates certain tests that you can perform at the command line.

1-157

1 Functions – Alphabetical List

• To test for steady-state tracking errors, use cloffset.
• To test the internal stability of a controller, check the eigenvalues of the mpc object.

Use ss to convert the mpc object to a state-space model, and call isstable.

More About

Tips

• You can review your controller design in the MPC Designer app. On the Tuning tab,
in the Analysis section, click Review Design.

• Test your controller design using techniques such as simulations, since review
cannot detect all possible performance factors.

• “Simulation and Code Generation Using Simulink Coder”
• “Review Model Predictive Controller for Stability and Robustness Issues”

See Also
cloffset | mpc | ss

Introduced in R2011b

1-158

 sensitivity

sensitivity
Compute effect of controller tuning weights on performance

Syntax

[J,sens] =

sensitivity(MPCobj,PerfFunc,PerfWeights,Tstop,r,v,simopt,utarget)

[J,sens] = sensitivity(MPCobj,'perf_fun',param1,param2,...)

Description

The sensitivity function is a controller tuning aid. J specifies a scalar performance
metric. sensitivity computes J and its partial derivatives with respect to the
controller tuning weights. These sensitivities suggest tuning weight adjustments that
should improve performance, that is, reduce J.

[J,sens] =

sensitivity(MPCobj,PerfFunc,PerfWeights,Tstop,r,v,simopt,utarget)

calculates the scalar performance metric, J, and sensitivities, sens, for the controller
defined by the MPC controller object MPCobj.

PerfFunc must be one of the following:

'ISE' (integral squared error) for which the performance metric is

J w e w e w u
j
y

yij j
u

uij j
u

ij
j

n

j

n

i

uy

= + +
Ê

Ë

Á
Á

ˆ

¯

˜
˜==

ÂÂ () [() ()]
2 2 2

11

D D
==
Â

1

Tstop

'IAE' (integral absolute error) for which the performance metric is

J w e w e w u
j
y

yij j
u

uij j
u

ij
j

n

j

n

i

T uy

= + +
Ê

Ë

Á
Á

ˆ

¯

˜
˜===

ÂÂ| | (| | | |)D D
111

sstop

Â

'ITSE' (integral of time-weighted squared error) for which the performance metric is

1-159

1 Functions – Alphabetical List

J i t w e w e w u
j
y

yij j
u

uij j
u

ij
j

n

j

n
uy

= + +
Ê

Ë

Á
Á

ˆ

¯==
ÂÂD DD

() [() ()]
2 2 2

11

˜̃
˜=

Â
i

Tstop

1

J i t w e w e w u

i

Tstop

j
y

yij j
u

uij j
u

ij
j

n

j

n
uy

= + +
= ==
Â ÂÂD DD

1 11

| | (| | | |)
ÊÊ

Ë

Á
Á

ˆ

¯

˜
˜

'ITAE' (integral of time-weighted absolute error) for which the performance metric is

In the above expressions ny is the number of controlled outputs and nu is the number
of manipulated variables. eyij is the difference between output j and its setpoint (or
reference) value at time interval i. euij is the difference between manipulated variable j
and its target at time interval i.

The w parameters are nonnegative performance weights defined by the structure
PerfWeights, which contains the following fields:

•
OutputVariables — ny element row vector that contains the w

j
y values

• ManipulatedVariables — nu element row vector that contains the w j
u values

• ManipulatedVariablesRate — nu element row vector that contains the w j
uD values

If PerfWeights is unspecified, it defaults to the corresponding weights in MPCobj.
In general, however, the performance weights and those used in the controller have
different purposes and should be defined accordingly.

Inputs Tstop, r, v, and simopt define the simulation scenario used to evaluate
performance. See sim for details.

Tstop is the integer number of controller sampling intervals to be simulated. The final
time for the simulations will be Tstop × Δt, where Δt is the controller sampling interval
specified in MPCobj.

The optional input utarget is a vector of nu manipulated variable targets. Their defaults
are the nominal values of the manipulated variables. Δuij is the change in manipulated
variable j and its target at time interval i.

1-160

 sensitivity

The structure variable sens contains the computed sensitivities (partial derivatives of J
with respect to the MPCobj tuning weights.) Its fields are:

• OutputVariables — ny element row vector of sensitivities with respect to
MPCobj.Weights.OutputVariables

• ManipulatedVariables — nu element row vector of sensitivities with respect to
MPCobj.Weights.ManipulatedVariables

• ManipulatedVariablesRate — nu element row vector of sensitivities with respect
to MPCobj.Weights.ManipulatedVariablesRate

See “Weights” on page 1-65 for details on the tuning weights contained in MPCobj.

[J,sens] = sensitivity(MPCobj,'perf_fun',param1,param2,...) employs a
performance function 'perf_fun' to define J. Its function definition must be in the form

function J = perf_fun(MPCobj, param1, param2, ...)

That is, it must compute J for the given controller and optional parameters param1,
param2, ... and it must be on the MATLAB path.

Note: While performing the sensitivity analysis, the software ignores time-varying,
nondiagonal, and ECR slack variable weights.

Examples

Compute Controller Performance and Sensitivity

Define a third-order plant model with three manipulated variables and two controlled
outputs.

plant = rss(3,2,3);

plant.D = 0;

Create an MPC controller for the plant.

MPCobj = mpc(plant,1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

1-161

1 Functions – Alphabetical List

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify an integral absolute error performance function and set the performance weights.

PerfFunc = 'IAE';

PerfWts.OutputVariables = [1 0.5];

PerfWts.ManipulatedVariables = zeros(1,3);

PerfWts.ManipulatedVariablesRate = zeros(1,3);

Define a 20 second simulation scenario with a unit step in the output 1 setpoint and a
setpoint of zero for output 2.

Tstop = 20;

r = [1 0];

Define the nominal values of the manipulated variables to be zeros.

utarget = zeros(1,3);

Calculate the performance metric, J, and sensitivities, sens, for the specified controller
and simulation scenario.

[J,sens] = sensitivity(MPCobj,PerfFunc,PerfWts,Tstop,r,[],[],utarget);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

See Also
mpc | sim

Introduced in R2009a

1-162

 set

set
Set or modify MPC object properties

Syntax

set(MPCobj,Property,Value)

set(MPCobj,Property1,Value1,Property2,Value2,...)

set(MPCobj,Property)

set(sys)

Description

The set function is used to set or modify the properties of an MPC controller (see “MPC
Controller Object” on page 3-2 for background on MPC properties). Like its Handle
Graphics® counterpart, set uses property name/property value pairs to update property
values.

set(MPCobj,Property,Value) assigns the value Value to the property of the MPC
controller MPCobj specified by the character vector Property. Property can be the
full property name (for example, 'UserData') or any unambiguous case-insensitive
abbreviation (for example, 'user').

set(MPCobj,Property1,Value1,Property2,Value2,...) sets multiple property
values with a single statement. Each property name/property value pair updates one
particular property.

set(MPCobj,Property) displays admissible values for the property specified by
the character vector Property. See “MPC Controller Object” on page 3-2 for an
overview of legitimate MPC property values.

set(sys) displays all assignable properties of sys and their admissible values.

See Also
get | mpc | mpcprops

Introduced before R2006a

1-163

1 Functions – Alphabetical List

setconstraint
Set custom constraints on linear combinations of plant inputs and outputs

Syntax

setconstraint(MPCobj,E,F,G)

setconstraint(MPCobj,E,F,G,V)

setconstraint(MPCobj,E,F,G,V,S)

setconstraint(MPCobj)

Description

setconstraint(MPCobj,E,F,G) specifies custom constraints of the following form for
the MPC controller, MPCobj:
Eu(k + j|k) + Fy(k + j|k) ≤ G + ε
where j = 0, ... , p, and:

• p is the prediction horizon.
• k is the current time index.
• E, F, and G are constant matrices. Each row of E, F, and G represents a linear

constraint to be imposed at each prediction horizon step.
• u is a column vector of manipulated variables.
• y is a column vector of all plant output variables.
• ε is a slack variable used for constraint softening (as in “Standard Cost Function”).

setconstraint(MPCobj,E,F,G,V) adds constraints of the following form:

Eu(k + j|k) + Fy(k + j|k) ≤ G + εV
where V is a constant vector representing the equal concern for the relaxation (ECR).

setconstraint(MPCobj,E,F,G,V,S) adds constraints of the following form:

Eu(k + j|k) + Fy(k + j|k) + Sv(k + j|k) ≤ G + εV
where:

1-164

 setconstraint

• v is a column vector of measured disturbance variables.
• S is a constant matrix.

setconstraint(MPCobj) removes all custom constraints from the MPC controller,
MPCobj.

Examples

Specify Custom Constraints on Linear Combination of Inputs and Outputs

Specify a constraint of the form on an MPC controller.

Create a third-order plant model with three manipulated variables and two measured
outputs.

plant = rss(3,2,3);

plant.D = 0;

Create an MPC controller for this plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Formulate the constraint in the required form:

Specify the constraint matrices.

E = [0 -1 2;0 1 -2];

F = [0 -1;0 1];

G = [0;15];

Set the constraints in the MPC controller.

1-165

1 Functions – Alphabetical List

setconstraint(MPCobj,E,F,G)

Specify Custom Hard Constraints for MPC Controller

Create a third-order plant model with two manipulated variables and two measured
outputs.

plant = rss(3,2,2);

plant.D = 0;

Create an MPC controller for this plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Assume that you have two hard constraints.

Specify the constraint matrices.

E = [1 1; 0 0];

F = [0 0; 1 1];

G = [5;10];

Specify the constraints as hard by setting V to zero for both constraints.

V = [0;0];

Set the constraints in the MPC controller.

setconstraint(MPCobj,E,F,G,V)

Specify Custom Constraints for MPC Controller with Measured Disturbances

Create a third-order plant model with two manipulated variables, two measured
disturbances, and two measured outputs.

1-166

 setconstraint

plant = rss(3,2,4);

plant.D = 0;

plant = setmpcsignals(plant,'mv',[1 2],'md',[3 4]);

Create an MPC controller for this plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Assume that you have three soft constraints.

Specify the constraint matrices.

E = [1 1; 0 0; 0 0];

F = [0 0; 1 0; 0 1];

G = [5;10;12];

S = [0 0; 1 0; 0 1];

Set the constraints in the MPC controller using the default value for V.

setconstraint(MPCobj,E,F,G,[],S)

Remove All Custom Constraints from MPC Controller

Define a plant model and create an MPC controller.

plant = rss(3,2,2);

plant.D = 0;

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

1-167

1 Functions – Alphabetical List

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define controller custom constraints.

E = [-1 2; 1 -2];

F = [0 1; 0 -1];

G = [0; 10];

setconstraint(MPCobj,E,F,G)

Remove the custom constraints.

setconstraint(MPCobj)

-->Removing mixed input/output constraints.

• “Using Custom Input and Output Constraints”
• “Nonlinear Blending Process with Custom Constraints”

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

E — Manipulated variable constraint constant
matrix of zeros (default) | matrix

Manipulated variable constraint constant, specified as a matrix with:

• nc rows, where nc is the number of constraints.
• nu columns, where nu is the number of manipulated variables.

F — Controlled output constraint constant
matrix of zeros (default) | matrix

Controlled output constraint constant, specified as a matrix with:

• nc rows, where nc is the number of constraints.

1-168

 setconstraint

• ny columns, where ny is the number of controlled outputs (measured and
unmeasured).

G — Custom constraint constant
column vector of zeros (default) | column vector

Custom constraint constant, specified as a column vector with nc elements, where nc is
the number of constraints.

V — Constraint softening constant
column vector of ones (default) | column vector

Constraint softening constant representing the equal concern for the relaxation (ECR),
specified as a column vector with nc elements, where nc is the number of constraints.

If V is not specified, a default value of 1 is applied to all constraint inequalities and all
constraints are soft. This behavior is the same as the default behavior for output bounds,
as described in “Standard Cost Function”.

To make the ith constraint hard, specify V(i) = 0.

To make the ith constraint soft, specify V(i) > 0 in keeping with the constraint violation
magnitude you can tolerate. The magnitude violation depends on the numerical scale of
the variables involved in the constraint.

In general, as V(i) decreases, the controller hardens the constraints by decreasing the
constraint violation that is allowed.

Note: If a constraint is difficult to satisfy, reducing its V(i) value to make it harder may
be counterproductive, and can lead to erratic control actions, instability, or failure of the
QP solver that determines the control action.

S — Measured disturbance constraint constant
matrix of zeros (default) | matrix

Measured disturbance constraint constant, specified as a matrix with:

• nc rows, where nc is the number of constraints.
• nv columns, where nv is the number of measured disturbances.

1-169

1 Functions – Alphabetical List

More About

Tips

• The outputs, y, are being predicted using a model. If the model is imperfect, there is
no guarantee that a constraint can be satisfied.

• Since the MPC controller does not optimize u(k + p|k), the last constraint at time k +
p assumes that u(k+p|k) = u(k+p–1|k).

• When simulating an MPC controller, you can update the custom constraints at each
iteration by calling setconstraint before calling mpcmove.

To deploy an MPC controller with run-time updating of custom constraints, use
MATLAB Compiler™ to generate the executable code, and deploy it using the
MATLAB Runtime. In this case, the controller sample time must be large, since run-
time MPC regeneration is slow.

Note: Updating the custom constraint matrices at each simulation iteration is not
supported in Simulink.

• “Constraints on Linear Combinations of Inputs and Outputs”
• “Run-Time Constraint Updating”

See Also
getconstraint | setterminal

Introduced in R2011a

1-170

 setEstimator

setEstimator
Modify a model predictive controller’s state estimator

Syntax

setEstimator(MPCobj,L,M)

setEstimator(MPCobj,'default')

setEstimator(MPCobj,'custom')

Description

setEstimator(MPCobj,L,M) sets the gain matrices used for estimation of the states
of an MPC controller. See “State Estimator Equations” on page 1-44. If L is empty, it
defaults to L = A*M, where A is the state transition matrix defined in “State Estimator
Equations” on page 1-44. If M is omitted or empty, it defaults to a zero matrix, and the
state estimator becomes a Luenberger observer.

setEstimator(MPCobj,'default') restores the gain matrices L and M to their
default values. The default values are the optimal static gains calculated by the Control
System Toolbox function kalmd for the plant, disturbance, and measurement noise
models specified in MPCobj.

setEstimator(MPCobj,'custom') specifies that controller state estimation will be
performed by a user-supplied procedure rather than the equations described in “State
Estimator Equations” on page 1-44. This option suppresses calculation of L and M. When
the controller is operating in this way, the procedure must supply the state estimate
x[n|n] to the controller at the beginning of each control interval.

Examples

Design State Estimator by Pole Placement

Design an estimator using pole placement, assuming the linear system is
solvable.

Create a plant model.

1-171

1 Functions – Alphabetical List

G = tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]});

To improve the clarity of this example, call mpcverbosity to suppress messages related
to working with an MPC controller.

old_status = mpcverbosity('off');

Create a model predictive controller for the plant. Specify the controller sample time as
0.2 seconds.

MPCobj = mpc(G, 0.2);

Obtain the default state estimator gain.

[~,M,A1,Cm1] = getEstimator(MPCobj);

Calculate the default observer poles.

e = eig(A1-A1*M*Cm1);

abs(e)

ans =

 0.9402

 0.9402

 0.8816

 0.8816

 0.7430

 0.9020

Specify faster observer poles.

new_poles = [.8 .75 .7 .85 .6 .81];

Compute a state-gain matrix that places the observer poles at new_poles.

L = place(A1',Cm1',new_poles)';

place returns the controller-gain matrix, whereas you want to compute the observer-
gain matrix. Using the principle of duality, which relates controllability to observability,
you specify the transpose of A1 and Cm1 as the inputs to place. This function call yields
the observer gain transpose.

Obtain the estimator gain from the state-gain matrix.

1-172

 setEstimator

M = A1\L;

Specify M as the estimator for MPCobj.

setEstimator(MPCobj,L,M)

The pair, (), describing the overall state-space realization of the combination
of plant and disturbance models must be observable for the state estimation design to
succeed. Observability is checked in Model Predictive Control Toolbox software at two
levels: (1) observability of the plant model is checked at construction of the MPC object,
provided that the model of the plant is given in state-space form; (2) observability of the
overall extended model is checked at initialization of the MPC object, after all models
have been converted to discrete-time, delay-free, state-space form and combined together.

Restore mpcverbosity.

mpcverbosity(old_status);

Input Arguments

MPCobj — MPC controller
MPC controller object

MPC controller, specified as an MPC controller object. Use the mpc command to create
the MPC controller.

L — Kalman gain matrix for time update
A*M (default) | matrix

Kalman gain matrix for the time update, specified as a matrix. The dimensions of L are
nx-by-nym, where nx is the total number of controller states, and nym is the number of
measured outputs. See “State Estimator Equations” on page 1-44.

If L is empty, it defaults to L = A*M, where A is the state transition matrix defined in
“State Estimator Equations” on page 1-44.

M — Kalman gain matrix for measurement update
0 (default) | matrix

Kalman gain matrix for the measurement update, specified as a matrix. The dimensions
of L are nx-by-nym, where nx is the total number of controller states, and nym is the
number of measured outputs. See “State Estimator Equations” on page 1-44.

1-173

1 Functions – Alphabetical List

If M is omitted or empty, it defaults to a zero matrix, and the state estimator becomes a
Luenberger observer.

More About
State Estimator Equations

The following equations describe the state estimation. For more details, see “Controller
State Estimation”.

Output estimate: ym[n|n–1] = Cm x[n|n–1] + Dvm v[n].

Measurement update: x[n|n] = x[n|n–1] + M (ym[n] –ym[n|n–1]).

Time update: x[n+1|n] = A x[n|n–1] + Bu u[n] + Bv v[n] + L (ym[n] – ym[n|n–1]).

Estimator state: x[n+1|n] = (A – L Cm) x[n|n–1] + Bu u[n] + (Bv–L Dvm) v[n] + L ym[v].
The estimator state is based on the current measurement of ym[n] and v[n] as well as the
optimal control action u[n] computed at the current control interval.

The variables in these equations are summarized in the following table.

Symbol Description

x Controller state vector, length nx. It includes (in this sequence):

• Plant model state estimates. Dimension obtained by
conversion of MPCobj.Model.Plant to discrete LTI state-
space form (if necessary), followed by use of absorbDelay to
convert any delays to additional states.

• Input disturbance model state estimates (if any). Use the
getindist command to review the input disturbance model
structure.

• Output disturbance model state estimates (if any). Use the
getoutdist command to review the output disturbance
model structure.

• Output measurement noise states (if any) as specified by
MPCobj.Model.Noise.

The length nx is the sum of the number of states in the above
four categories.

1-174

 setEstimator

Symbol Description

ym Vector of measured outputs or an estimate of their true values,
length nym.

u Vector of manipulated variables, length nu.
v Vector of measured input disturbances, length nv.
[j|k] Denotes an estimate of a state or output at time tj based on data

available at time tk.
[k] Denotes a quantity known at time tk, i.e., not an estimate.
A nx-by-nx state transition matrix.
Bu nx-by-nu matrix mapping u to x.
Bv nx-by-nx matrix mapping v to x.
Cm nym-by-nx matrix mapping x to ym.
Dvm nym-by-nv matrix mapping v to ym. Note that Dum = 0 because

there can be no direct feedthrough between any manipulated
variable and any measured output.

L nx-by-nym Kalman gain matrix for the time update. (See kalmd
in the Control System Toolbox documentation.) Note that L =
A*M minimizes the expected state estimation error for most
combinations of plant and disturbance models used in MPC, but
this is not true in general.

M nx-by-nym Kalman gain matrix for the measurement update.
(See kalmd in the Control System Toolbox documentation.)

See Also
getEstimator | kalman | mpc | mpcstate

Introduced in R2014b

1-175

1 Functions – Alphabetical List

setindist
Modify unmeasured input disturbance model

Syntax

setindist(MPCobj,'model',model)

setindist(MPCobj,'integrators')

Description

setindist(MPCobj,'model',model) sets the input disturbance model used by the
model predictive controller, MPCobj, to a custom model.

setindist(MPCobj,'integrators') sets the input disturbance model to its default
value. Use this syntax if you previously set a custom input disturbance model and you
want to change back to the default model. For more information on the default input
disturbance model, see “MPC Modeling”.

Examples

Specify Input Disturbance Model Using Transfer Functions

Define a plant model with no direct feedthrough.

plant = rss(3,4,4);

plant.D = 0;

Set the first input signal as a manipulated variable and the remaining inputs as input
disturbances.

plant = setmpcsignals(plant,'MV',1,'UD',[2 3 4]);

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

1-176

 setindist

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2 y3 y4

Define disturbance models such that:

• Input disturbance 1 is random white noise with a magnitude of 2.
• Input disturbance 2 is random step-like noise with a magnitude of 0.5.
• Input disturbance 3 is random ramp-like noise with a magnitude of 1.

mod1 = tf(2,1);

mod2 = tf(0.5,[1 0]);

mod3 = tf(1,[1 0 0]);

Construct the input disturbance model using the above transfer functions. Use a separate
noise input for each input disturbance.

indist = [mod1 0 0; 0 mod2 0; 0 0 mod3];

Set the input disturbance model in the MPC controller.

setindist(MPCobj,'model',indist)

View the controller input disturbance model.

getindist(MPCobj)

ans =

 A =

 x1 x2 x3

 x1 1 0 0

 x2 0 1 0

 x3 0 0.1 1

 B =

 Noise#1 Noise#2 Noise#3

 x1 0 0.05 0

 x2 0 0 0.1

 x3 0 0 0.005

1-177

1 Functions – Alphabetical List

 C =

 x1 x2 x3

 UD1 0 0 0

 UD2 1 0 0

 UD3 0 0 1

 D =

 Noise#1 Noise#2 Noise#3

 UD1 2 0 0

 UD2 0 0 0

 UD3 0 0 0

Sample time: 0.1 seconds

Discrete-time state-space model.

The controller converts the continuous-time transfer function model, indist, into a
discrete-time state-space model.

Remove Input Disturbance for Particular Channel

Define a plant model with no direct feedthrough.

plant = rss(3,4,4);

plant.D = 0;

Set the first input signal as a manipulated variable and the remaining inputs as input
disturbances.

plant = setmpcsignals(plant,'MV',1,'UD',[2 3 4]);

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2 y3 y4

Retrieve the default input disturbance model from the controller.

distMod = getindist(MPCobj);

1-178

 setindist

-->Converting model to discrete time.

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #2 is integrated white noise.

 Assuming unmeasured input disturbance #3 is integrated white noise.

 Assuming unmeasured input disturbance #4 is integrated white noise.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

 Assuming no disturbance added to measured output channel #2.

 Assuming no disturbance added to measured output channel #3.

 Assuming no disturbance added to measured output channel #4.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Remove the integrator from the second input disturbance. Construct the new input
disturbance model by removing the second input channel and setting the effect on the
second output by the other two inputs to zero.

distMod = sminreal([distMod(1,1) distMod(1,3); 0 0; distMod(3,1) distMod(3,3)]);

setindist(MPCobj,'model',distMod)

When removing an integrator from the input disturbance model in this way, use
sminreal to make the custom model structurally minimal.

View the input disturbance model.

tf(getindist(MPCobj))

ans =

 From input "UD1-wn" to output...

 0.1

 UD1: -----

 z - 1

 UD2: 0

 UD3: 0

 From input "UD3-wn" to output...

 UD1: 0

 UD2: 0

 0.1

 UD3: -----

 z - 1

1-179

1 Functions – Alphabetical List

Sample time: 0.1 seconds

Discrete-time transfer function.

The integrator has been removed from the second channel. The first and third
channels of the input disturbance model remain at their default values as discrete-time
integrators.

Set Input Disturbance Model to Default Value

Define a plant model with no direct feedthrough.

plant = rss(2,2,3);

plant.D = 0;

Set the second and third input signals as input disturbances.

plant = setmpcsignals(plant,'MV',1,'UD',[2 3]);

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2

Set the input disturbance model to unity gain for both channels.

setindist(MPCobj,'model',tf(eye(2)))

Restore the default input disturbance model.

setindist(MPCobj,'integrators')

Input Arguments

MPCobj — Model predictive controller
MPC controller object

1-180

 setindist

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

model — Custom input disturbance model
[] (default) | ss object | tf object | zpk object

Custom input disturbance model, specified as a state-space (ss), transfer function (tf),
or zero-pole-gain (zpk) model. The MPC controller converts the model to a discrete-time,
delay-free, state-space model. Omitting model or specifying model as [] is equivalent to
using setindist(MPCobj,'integrators').

The input disturbance model has:

• Unit-variance white noise input signals. For custom input disturbance models, the
number of inputs is your choice.

• nd outputs, where nd is the number of unmeasured disturbance inputs defined in
MPCobj.Model.Plant. Each disturbance model output is sent to the corresponding
plant unmeasured disturbance input.

This model, in combination with the output disturbance model (if any), governs how well
the controller compensates for unmeasured disturbances and prediction errors. For more
information on the disturbance modeling in MPC and about the model used during state
estimation, see “MPC Modeling” and “Controller State Estimation”.

setindist does not check custom input disturbance models for violations of state
observability. This check is performed later in the MPC design process when the internal
state estimator is constructed using commands such as sim or mpcmove. If the controller
states are not fully observable, these commands generate an error.

This syntax is equivalent to MPCobj.Model.Disturbance = model.

More About

Tips

• To view the current input disturbance model, use the getindist command.

• “MPC Modeling”
• “Controller State Estimation”
• “Adjusting Disturbance and Noise Models”

1-181

1 Functions – Alphabetical List

See Also
getEstimator | getoutdist | mpc | setEstimator | setindist

Introduced before R2006a

1-182

 setmpcsignals

setmpcsignals

Set signal types in MPC plant model

Syntax

P = setmpcsignals(P,SignalType1,Channels1,SignalType2,Channels2,...)

Description

The purpose of setmpcsignals is to configure the input/output channels of the MPC
plant model P. P must be an LTI object. Valid signal types, their abbreviations, and the
channel type they refer to are listed below.

Signal Type Abbreviation Channel

Manipulated MV Input
MeasuredDisturbances MD Input
UnmeasuredDisturbances UD Input
MeasuredOutputs MO Output
UnmeasuredOutputs UO Output

Unambiguous abbreviations of signal types are also accepted.

Note When using setmpcsignals to modify an existing MPC object, be sure that the
fields Weights, MV, OV, DV, Model.Noise, and Model.Disturbance are consistent with
the new I/O signal types.

P=setmpcsignals(P) sets channel assignments to default, namely all inputs are
manipulated variables (MVs), all outputs are measured outputs (MOs). More generally,
input signals that are not explicitly assigned are assumed to be MVs, while unassigned
output signals are considered as MOs.

1-183

1 Functions – Alphabetical List

Examples

Set MPC Signal Types and Create MPC Controller

Create a four-input, two output state-space plant model. By default all input signals are
manipulated variables and all outputs are measured outputs.

plant = rss(3,2,4);

plant.D = 0;

Configure the plant input/output channels such that:

• The second and third inputs are measured disturbances.
• The fourth input is an unmeasured disturbance.
• The second output is unmeasured.

plant = setmpcsignals(plant,'MD',[2 3],'UD',4,'UO',2);

-->Assuming unspecified input signals are manipulated variables.

-->Assuming unspecified output signals are measured outputs.

Create an MPC controller.

MPCobj = mpc(plant,1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 and zero weight for output(s) y2

More About
• “MPC Modeling”

See Also
mpc | set

Introduced before R2006a

1-184

 setname

setname
Set I/O signal names in MPC prediction model

Syntax

setname(MPCobj,'input',I,name)

setname(MPCobj,'output',I,name)

Description

setname(MPCobj,'input',I,name) changes the name of the Ith input signal to
name. This is equivalent to MPCobj.Model.Plant.InputName{I}=name. Note that
setname also updates the read-only Name fields of MPCobj.DisturbanceVariables
and MPCobj.ManipulatedVariables.

setname(MPCobj,'output',I,name) changes the name of the Ith output signal to
name. This is equivalent to MPCobj.Model.Plant.OutputName{I} =name. Note that
setname also updates the read-only Name field of MPCobj.OutputVariables.

Note The Name properties of ManipulatedVariables, OutputVariables, and
DisturbanceVariables are read-only. You must use setname to assign signal names,
or equivalently modify the Model.Plant.InputName and Model.Plant.OutputName
properties of the MPC object.

See Also
getname | mpc | set

Introduced before R2006a

1-185

1 Functions – Alphabetical List

setoutdist
Modify unmeasured output disturbance model

Syntax

setoutdist(MPCobj,'model',model)

setoutdist(MPCobj,'integrators')

Description

setoutdist(MPCobj,'model',model) sets the output disturbance model used by the
model predictive controller, MPCobj, to a custom model.

setoutdist(MPCobj,'integrators') sets the output disturbance model to its
default value. Use this syntax if you previously set a custom output disturbance model
and you want to change back to the default model. For more information on the default
output disturbance model, see “MPC Modeling”.

Examples

Specify Output Disturbance Model Using Transfer Functions

Define a plant model with no direct feedthrough, and create an MPC controller for that
plant.

plant = rss(3,3,3);

plant.D = 0;

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define disturbance models for each output such that the output disturbance for:

1-186

 setoutdist

• Channel 1 is random white noise with a magnitude of 2.
• Channel 2 is random step-like noise with a magnitude of 0.5.
• Channel 3 is random ramp-like noise with a magnitude of 1.

mod1 = tf(2,1);

mod2 = tf(0.5,[1 0]);

mod3 = tf(1,[1 0 0]);

Construct the output disturbance model using these transfer functions. Use a separate
noise input for each output disturbance.

outdist = [mod1 0 0; 0 mod2 0; 0 0 mod3];

Set the output disturbance model in the MPC controller.

setoutdist(MPCobj,'model',outdist)

View the controller output disturbance model.

getoutdist(MPCobj)

ans =

 A =

 x1 x2 x3

 x1 1 0 0

 x2 0 1 0

 x3 0 0.1 1

 B =

 Noise#1 Noise#2 Noise#3

 x1 0 0.05 0

 x2 0 0 0.1

 x3 0 0 0.005

 C =

 x1 x2 x3

 MO1 0 0 0

 MO2 1 0 0

 MO3 0 0 1

 D =

 Noise#1 Noise#2 Noise#3

1-187

1 Functions – Alphabetical List

 MO1 2 0 0

 MO2 0 0 0

 MO3 0 0 0

Sample time: 0.1 seconds

Discrete-time state-space model.

The controller converts the continuous-time transfer function model, outdist, into a
discrete-time state-space model.

Remove Output Disturbance from Particular Output Channel

Define a plant model with no direct feedthrough, and create an MPC controller for that
plant.

plant = rss(3,3,3);

plant.D = 0;

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Retrieve the default output disturbance model from the controller.

distMod = getoutdist(MPCobj);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

-->Assuming output disturbance added to measured output channel #2 is integrated white noise.

-->Assuming output disturbance added to measured output channel #3 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Remove the integrator from the second output channel. Construct the new output
disturbance model by removing the second input channel and setting the effect on the
second output by the other two inputs to zero.

distMod = sminreal([distMod(1,1) distMod(1,3); 0 0; distMod(3,1) distMod(3,3)]);

setoutdist(MPCobj,'model',distMod)

When removing an integrator from the output disturbance model in this way, use
sminreal to make the custom model structurally minimal.

1-188

 setoutdist

View the output disturbance model.

tf(getoutdist(MPCobj))

ans =

 From input "Noise#1" to output...

 0.1

 MO1: -----

 z - 1

 MO2: 0

 MO3: 0

 From input "Noise#2" to output...

 MO1: 0

 MO2: 0

 0.1

 MO3: -----

 z - 1

Sample time: 0.1 seconds

Discrete-time transfer function.

The integrator has been removed from the second channel. The disturbance models for
channels 1 and 3 remain at their default values as discrete-time integrators.

Remove Output Disturbances from All Output Channels

Define a plant model with no direct feedthrough and create an MPC controller for that
plant.

plant = rss(3,3,3);

plant.D = 0;

MPCobj = mpc(plant,1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

1-189

1 Functions – Alphabetical List

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Set the output disturbance model to zero for all three output channels.

setoutdist(MPCobj,'model',tf(zeros(3,1)))

View the output disturbance model.

getoutdist(MPCobj)

ans =

 D =

 Noise#1

 MO1 0

 MO2 0

 MO3 0

Static gain.

A static gain of 0 for all output channels indicates that the output disturbances were
removed.

Set Output Disturbance Model to Default Value

Define a plant model with no direct feedthrough and create an MPC controller for that
plant.

plant = rss(2,2,2);

plant.D = 0;

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Remove the output disturbances for all channels.

setoutdist(MPCobj,'model',tf(zeros(2,1)))

Restore the default output disturbance model.

1-190

 setoutdist

setoutdist(MPCobj,'integrators')

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

model — Custom output disturbance model
[] (default) | ss object | tf object | zpk object

Custom output disturbance model, specified as a state-space (ss), transfer function (tf),
or zero-pole-gain (zpk) model. The MPC controller converts the model to a discrete-time,
delay-free, state-space model. Omitting model or specifying model as [] is equivalent to
using setoutdist(MPCobj,'integrators').

The output disturbance model has:

• Unit-variance white noise input signals. For custom output disturbance models, the
number of inputs is your choice.

• ny outputs, where ny is the number of plant outputs defined in
MPCobj.Model.Plant. Each disturbance model output is added to the corresponding
plant output.

This model, along with the input disturbance model (if any), governs how well the
controller compensates for unmeasured disturbances and modeling errors. For more
information on the disturbance modeling in MPC and about the model used during state
estimation, see “MPC Modeling” and “Controller State Estimation”.

setoutdist does not check custom output disturbance models for violations of state
observability. This check is performed later in the MPC design process when the internal
state estimator is constructed using commands such as sim or mpcmove. If the controller
states are not fully observable, these commands will generate an error.

1-191

1 Functions – Alphabetical List

More About

Tips

• To view the current output disturbance model, use the getoutdist command.

• “MPC Modeling”
• “Controller State Estimation”
• “Adjusting Disturbance and Noise Models”

See Also
getEstimator | getoutdist | mpc | setEstimator | setindist

Introduced in R2006a

1-192

 setterminal

setterminal
Terminal weights and constraints

Syntax

setterminal(MPCobj,Y,U)

setterminal(MPCobj,Y,U,Pt)

Description

setterminal(MPCobj,Y,U) specifies diagonal quadratic penalty weights and
constraints at the last step in the prediction horizon. The weights and constraints are
on the terminal output y(t+p) and terminal input u(t+p – 1), where p is the prediction
horizon of the MPC controller MPCobj.

setterminal(MPCobj,Y,U,Pt) specifies diagonal quadratic penalty weights and
constraints from step Pt to the horizon end. By default, Pt is the last step in the horizon.

Input Arguments

MPCobj

MPC controller, specified as an MPC controller object

Default:

Y

Terminal weights and constraints for the output variables, specified as a structure with
the following fields:

Weight 1-by-ny vector of nonnegative weights
Min 1-by-ny vector of lower bounds
Max 1-by-ny vector of upper bounds

1-193

1 Functions – Alphabetical List

MinECR 1-by-ny vector of constraint-softening Equal Concern for the
Relaxation (ECR) values for the lower bounds

MaxECR 1-by-ny vector of constraint-softening ECR values for the upper
bounds

ny is the number of controlled outputs of the MPC controller.

If the Weight, Min or Max field is empty, the values in MPCobj are used at all prediction
horizon steps including the last. For the standard bounds, if any element of the Min or
Max field is infinite, the corresponding variable is unconstrained at the terminal step.

Off-diagonal weights are zero (as described in “Standard Cost Function”). To apply
nonzero off-diagonal terminal weights, you must augment the plant model. See
“Designing Model Predictive Controller Equivalent to Infinite-Horizon LQR”.

By default, Y.MinECR = Y.MaxECR = 1 (soft output constraints).

Choose the ECR magnitudes carefully, accounting for the importance of each constraint
and the numerical magnitude of a typical violation.

Default:

U

Terminal weights and constraints for the manipulated variables, specified as a structure
with the following fields:

Weight 1-by-nu vector of nonnegative weights
Min 1-by-nu vector of lower bounds
Max 1-by-nu vector of upper bounds
MinECR 1-by-nu vector of constraint-softening Equal Concern for the

Relaxation (ECR) values for the lower bounds
MaxECR 1-by-nu vector of constraint-softening ECR values for the

upper bounds

nu is the number of manipulated variables of the MPC controller.

If the Weight, Min or Max field is empty, the values in MPCobj are used at all prediction
horizon steps including the last. For the standard bounds, if individual elements of

1-194

 setterminal

the Min or Max fields are infinite, the corresponding variable is unconstrained at the
terminal step.

Off-diagonal weights are zero (as described in “Standard Cost Function”). To apply
nonzero off-diagonal terminal weights, you must augment the plant model. See
“Designing Model Predictive Controller Equivalent to Infinite-Horizon LQR”.

By default, U.MinECR = U.MaxECR = 0 (hard manipulated variable constraints)

Choose the ECR magnitudes carefully, accounting for the importance of each constraint
and the numerical magnitude of a typical violation.

Default:

Pt

Step in the prediction horizon, specified as an integer between 1 and p, where p is the
prediction horizon. The terminal values are applied to Y and U from prediction step Pt to
the end.

Default: Prediction horizon p

Examples

Specify Constraints and Penalty Weights at Last Prediction Horizon Step

Create an MPC controller for a plant with three output variables and two manipulated
variables.

plant = rss(3,3,2);

plant.D = 0;

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 y2 and zero weight for output(s) y3

Specify a prediction horizon of 8.

1-195

1 Functions – Alphabetical List

MPCobj.PredictionHorizon = 8;

Define the following penalty weights and constraints:

• Diagonal penalty weights of 1 and 10 on the first two output variables
• Lower bounds of 0 and -1 on the first and third outputs respectively
• Upper bound of 2 on the second output
• Lower bound of 1 on the first manipulated variable

Y = struct('Weight',[1,10,0],'Min',[0,-Inf,-1],'Max',[Inf,2,Inf]);

U = struct('Min',[1,-Inf]);

Specify the constraints and penalty weights at the last step of the prediction horizon.

setterminal(MPCobj,Y,U)

Specify Terminal Constraints For Final Prediction Horizon Range

Create an MPC controller for a plant with three output variables and two manipulated
variables.

plant = rss(3,3,2);

plant.D = 0;

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

 for output(s) y1 y2 and zero weight for output(s) y3

Specify a prediction horizon of 10.

MPCobj.PredictionHorizon = 10;

Define the following terminal constraints:

• Lower bounds of 0 and -1 on the first and third outputs respectively
• Upper bound of 2 on the second output
• Lower bound of 1 on the first manipulated variable

Y = struct('Min',[0,-Inf,-1],'Max',[Inf,2,Inf]);

1-196

 setterminal

U = struct('Min',[1,-Inf]);

Specify the constraints beginning at step 5 and ending at the last step of the prediction
horizon.

setterminal(MPCobj,Y,U,5)

• “Provide LQR Performance Using Terminal Penalty Weights”
• “Designing Model Predictive Controller Equivalent to Infinite-Horizon LQR”

More About

Tips

• Advanced users can impose terminal polyhedral state constraints:

K1 ≤ Hx ≤ K2.

First, augment the plant model with additional artificial (unmeasured) outputs, y =
Hx. Then specify bounds K1 and K2 on these y outputs.

• “Terminal Weights and Constraints”

See Also
mpc | mpcprops | setconstraint

Introduced in R2011a

1-197

1 Functions – Alphabetical List

sim
Simulate closed-loop/open-loop response to arbitrary reference and disturbance signals
for implicit or explicit MPC

Syntax

sim(MPCobj,T,r)

sim(MPCobj,T,r,v)

sim(___ ,SimOptions)

[y,t,u,xp,xmpc,SimOptions] = sim(___)

Description

Use sim to simulate the implicit (traditional) or explicit MPC controller in closed loop
with a linear time-invariant model, which, by default, is the plant model contained in
MPCobj.Model.Plant. As an alternative, sim can simulate the open-loop behavior of
the model of the plant, or the closed-loop behavior in the presence of a model mismatch,
when the controller’s prediction model differs from the actual plant model.

sim(MPCobj,T,r) simulates the closed-loop system formed by the plant model specified
in MPCobj.Model.Plant and by the MPC controller specified by the MPC controller
MPCobj, in response to the specified reference signal, r. The MPC controller can be
either a traditional MPC controller (mpc) or explicit MPC controller (explicitMPC). The
simulation runs for the specified number of simulation steps, T. sim plots the simulation
results.

sim(MPCobj,T,r,v) also specifies the measured disturbance signal v.

sim(___ ,SimOptions) specifies additional simulation options, which you create with
mpcsimopt. This syntax allows you to alter the default simulation options, such as
initial states, input/output noise and unmeasured disturbances, plant mismatch, etc. You
can use SimOptions with any of the previous input combinations.

[y,t,u,xp,xmpc,SimOptions] = sim(___) suppresses plotting and instead returns
the sequence of plant outputs y, the time sequence t (equally spaced by MPCobj.Ts),
the manipulated variables u generated by the MPC controller, the sequence xp of states

1-198

 sim

of the model of the plant used for simulation, the sequence xmpc of states of the MPC
controller (provided by the state observer), and the simulation options, SimOptions. You
can use this syntax with any of the allowed input argument combinations.

Input Arguments

MPCobj

MPC controller containing the parameters of the Model Predictive Control law to
simulate, specified as either an implicit MPC controller (mpc) or an explicit MPC
controller (generateExplicitMPC).

T

Number of simulation steps, specified as a positive integer.

If you omit T, the default value is the row size of whichever of the following arrays has
the largest row size:

• The input argument r
• The input argument v
• The UnmeasuredDisturbance property of SimOptions, if specified
• The OutputNoise property of SimOptions, if specified

Default: The largest row size of r, v, UnmeasuredDisturbance, and OutputNoise

r

Reference signal, specified as an array. This array has ny columns, where ny is the
number of plant outputs. r can have anywhere from 1 to T rows. If the number of rows is
less than T, the missing rows are set equal to the last row.

Default: MPCobj.Model.Nominal.Y

v

Measured disturbance signal, specified as an array. This array has nv columns, where nv
is the number of measured input disturbances. v can have anywhere from 1 to T rows. If
the number of rows is less than T, the missing rows are set equal to the last row.

1-199

1 Functions – Alphabetical List

Default: Corresponding entries from MPCobj.Model.Nominal.U

SimOptions

Simulation options, specified as an options object you create using mpcsimopt.

Default: []

Output Arguments

y

Sequence of controlled plant outputs, returned as a T-by-Ny array, where T is the number
of simulation steps and Ny is the number of plant outputs. The values in y do not include
additive measurement noise, if any).

t

Time sequence, returned as a T-by-1 array, where T is the number of simulation steps.
The values in t are equally spaced by MPCobj.Ts.

u

Sequence of manipulated variables generated by the MPC controller, returned as a
T-by-Nu array, where T is the number of simulation steps and Nu is the number of
manipulated variables.

xp

Sequence of plant model states, T-by-Nxp array, where T is the number of simulation
steps and Nxp is the number of states in the plant model. The plant model is either
MPCobj.Model or SimOptions.Model, if the latter is specified.

xmpc

Sequence of MPC controller state estimates, returned as a T-by-1 structure array.
Each entry in the structure array has the same fields as an mpcstate object. The state
estimates include plant, disturbance, and noise model states at each time step.

SimOptions

Simulation options used, returned as a mpcsimopt object.

1-200

 sim

Examples

Simulate MPC Control of MISO Plant

Simulate the MPC control of a MISO system. The system has one manipulated variable,
one measured disturbance, one unmeasured disturbance, and one output.

Create the continuous-time plant model. This plant will be used as the prediction model
for the MPC controller.

sys = ss(tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}));

Discretize the plant model using a sampling time of 0.2 units.

Ts = 0.2;

sysd = c2d(sys,Ts);

Specify the MPC signal type for the plant input signals.

sysd = setmpcsignals(sysd,'MV',1,'MD',2,'UD',3);

Create an MPC controller for the sysd plant model. Use default values for the weights
and horizons.

MPCobj = mpc(sysd);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon = 10.

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Constrain the manipulated variable to the [0 1] range.

MPCobj.MV = struct('Min',0,'Max',1);

Specify the simulation stop time.

Tstop = 30;

Define the reference signal and the measured disturbance signal.

num_sim_steps = round(Tstop/Ts);

1-201

1 Functions – Alphabetical List

r = ones(num_sim_steps,1);

v = [zeros(num_sim_steps/3,1); ones(2*num_sim_steps/3,1)];

The reference signal, r, is a unit step. The measured disturbance signal, v, is a unit step,
with a 10 unit delay.

Simulate the controller.

sim(MPCobj,num_sim_steps,r,v)

-->The "Model.Disturbance" property of "mpc" object is empty:

 Assuming unmeasured input disturbance #3 is integrated white noise.

 Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

1-202

 sim

See Also
mpcsimopt | mpc | mpcmove

Introduced before R2006a

1-203

1 Functions – Alphabetical List

simplify
Reduce explicit MPC controller complexity and memory requirements

Syntax

EMPCreduced = simplify(EMPCobj,'exact')

EMPCreduced = simplify(EMPCobj,'exact',uniteeps)

EMPCreduced = simplify(EMPCobj,'radius',r)

EMPCreduced = simplify(EMPCobj,'sequence',index)

simplify(EMPCobj, ___)

Description

EMPCreduced = simplify(EMPCobj,'exact') attempts to reduce the number of
piecewise affine (PWA) regions in an explicit MPC controller by merging regions that
have identical controller gains and whose union is a convex set. Reducing the number of
PWA regions reduces memory requirements of the controller. This command returns a
reduced controller, EMPCreduced.

EMPCreduced = simplify(EMPCobj,'exact',uniteeps) specifies the tolerance for
identifying regions that can be merged.

EMPCreduced = simplify(EMPCobj,'radius',r) retains only regions whose
Chebyshev radius (the radius of the largest ball contained in the region) is larger than r.

EMPCreduced = simplify(EMPCobj,'sequence',index) eliminates all regions
except those specified in an index vector.

simplify(EMPCobj, ___) applies the reduction to the explicit MPC controller
EMPCobj, rather than returning a new controller object. You can use this syntax with
any of the previous reduction options.

Input Arguments

EMPCobj — Explicit MPC controller
explicit MPC controller object

1-204

 simplify

Explicit MPC controller to reduce, specified as an Explicit MPC controller object. Use
generateExplicitMPC to create an explicit MPC controller.

uniteeps — Tolerance for joining regions
0.001 (default) | positive scalar

Tolerance for joining PWA regions, specified as a positive scalar.

r — Minimum Chebyshev radius
0 (default) | nonnegative scalar

Minimum Chebyshev radius for retaining PWA regions, specified as a nonnegative
scalar. When you use the 'radius' option, simplify keeps only the regions whose
Chebyshev radius is larger than r. The default value is 0, which causes all regions to be
retained.

index — Indices of PWA regions to retain
1:nr (default) | vector

Indices of PWA regions to retain, specified as a vector. The default value is [1:nr],
where nr is the number of PWA regions in EMPCobj. Thus, by default, all regions are
retained. You can obtain a sequence of regions to retain by performing simulations using
EMPCobj and recording the indices of regions actually encountered.

Output Arguments

EMPCreduced — Reduced MPC controller
explicit MPC controller object

Reduced MPC controller, returned as an Explicit MPC controller object.

See Also
generateExplicitMPC

Introduced in R2014b

1-205

1 Functions – Alphabetical List

size
Size and order of MPC Controller

Syntax

mpc_obj_size = size(MPCobj)

mpc_obj_size = size(MPCobj,signal_type)

size(MPCobj)

Description

mpc_obj_size = size(MPCobj) returns a row vector specifying the number of
manipulated inputs and measured controlled outputs of an MPC controller. This row
vector contains the elements [nu nym], where nu is the number of manipulated inputs and
nym is the number of measured controlled outputs.

mpc_obj_size = size(MPCobj,signal_type) returns the number of signals of the
specified type that are associated with the MPC controller.

You can specify signal_type as one of the following:

• 'uo' — Unmeasured controlled outputs
• 'md' — Measured disturbances
• 'ud' — Unmeasured disturbances
• 'mv' — Manipulated variables
• 'mo' — Measured controlled outputs

size(MPCobj) displays the size information for all the signal types of the MPC
controller.

See Also
mpc | set

Introduced before R2006a

1-206

 ss

ss
Convert unconstrained MPC controller to state-space linear system

Syntax

sys = ss(MPCobj)

sys = ss(MPCobj,signals)

sys = ss(MPCobj,signals,ref_preview,md_preview)

[sys,ut] = ss(MPCobj)

Description

The ss command returns a linear controller in the state-space form. The controller is
equivalent to the traditional (implicit) MPC controller MPCobj when no constraints are
active. You can then use Control System Toolbox software for sensitivity analysis and
other diagnostic calculations.

sys = ss(MPCobj) returns the linear discrete-time dynamic controller sys

x(k + 1) = Ax(k) + Bym(k)

u(k) = Cx(k) + Dym(k)

where ym is the vector of measured outputs of the plant, and u is the vector of
manipulated variables. The sampling time of controller sys is MPCobj.Ts.

Note Vector x includes the states of the observer (plant + disturbance + noise model
states) and the previous manipulated variable u(k-1).

sys = ss(MPCobj,signals) returns the linearized MPC controller in its full form and
allows you to specify the signals that you want to include as inputs for sys.

The full form of the MPC controller has the following structure:

x(k + 1) = Ax(k) + Bym(k) + Brr(k) + Bvv(k) + Bututarget(k) + Boff

1-207

1 Functions – Alphabetical List

u(k) = Cx(k) + Dym(k) + Drr(k) + Dvv(k) + Dututarget(k) + Doff

Here, r is the vector of setpoints for both measured and unmeasured plant outputs,
v is the vector of measured disturbances, utarget is the vector of preferred values for
manipulated variables.

Specify signals as a single-character or multicharacter vector constructed using any of
the following:

• 'r' — Output references

• 'v' — Measured disturbances

• 'o' — Offset terms

• 't' — Input targets

For example, to obtain a controller that maps [ym; r; v] to u, use:

sys = ss(MPCobj,'rv');

In the general case of nonzero offsets, ym (as well as r, v, and utarget) must be interpreted
as the difference between the vector and the corresponding offset. Offsets can be nonzero
is MPCobj.Model.Nominal.Y or MPCobj.Model.Nominal.U are nonzero.

Vectors Boff, Doff are constant terms. They are nonzero if and only if
MPCobj.Model.Nominal.DX is nonzero (continuous-time prediction models), or
MPCobj.Model.Nominal.Dx-MPCobj.Model.Nominal.X is nonzero (discrete-time
prediction models). In other words, when Nominal.X represents an equilibrium state,
Boff, Doff are zero.

Only the following fields of MPCobj are used when computing the state-space model:
Model, PredictionHorizon, ControlHorizon, Ts, Weights.

sys = ss(MPCobj,signals,ref_preview,md_preview) specifies if the MPC
controller has preview actions on the reference and measured disturbance signals. If
the flag ref_preview='on', then matrices Br and Dr multiply the whole reference
sequence:

x(k + 1) = Ax(k) + Bym(k) + Br[r(k);r(k + 1);...;r(k + p – 1)] +...

u(k) = Cx(k) + Dym(k) + Dr[r(k);r(k + 1);...;r(k + p– 1)] +...

1-208

 ss

Similarly if the flag md_preview='on', then matrices Bv and Dv multiply the whole
measured disturbance sequence:

x(k + 1) = Ax(k) +...+ Bv[v(k);v(k + 1);...;v(k + p)] +...

u(k) = Cx(k) +...+ Dv[v(k);v(k + 1);...;v(k + p)] +...

[sys,ut] = ss(MPCobj) additionally returns the input target values for the full form
of the controller.

ut is returned as a vector of doubles, [utarget(k); utarget(k+1); ... utarget(k
+h)].

Here:

• h — Maximum length of previewed inputs, that is, h =
max(length(MPCobj.ManipulatedVariables(:).Target))

• utarget — Difference between the input target and corresponding input offsets, that
is, MPCobj.ManipulatedVariables(:).Targets - MPCobj.Model.Nominal.U

Examples

Convert Unconstrained MPC Controller to State-Space Model

To improve the clarity of the example, suppress messages about working with an MPC
controller.

old_status = mpcverbosity('off');

Create the plant model.

G = rss(5,2,3);

G.D = 0;

G = setmpcsignals(G,'mv',1,'md',2,'ud',3,'mo',1,'uo',2);

Configure the MPC controller with nonzero nominal values, weights, and input targets.

C = mpc(G,0.1);

C.Model.Nominal.U = [0.7 0.8 0];

C.Model.Nominal.Y = [0.5 0.6];

C.Model.Nominal.DX = rand(5,1);

1-209

1 Functions – Alphabetical List

C.Weights.MV = 2;

C.Weights.OV = [3 4];

C.MV.Target = [0.1 0.2 0.3];

C is an unconstrained MPC controller. Specifying C.Model.Nominal.DX as nonzero
means that the nominal values are not at steady state. C.MV.Target specifies three
preview steps.

Convert C to a state-space model.

sys = ss(C);

The output, sys, is a seventh-order SISO state-space model. The seven states include the
five plant model states, one state from the default input disturbance model, and one state
from the previous move, u(k-1).

Restore mpcverbosity.

mpcverbosity(old_status);

See Also
mpc | set | tf | zpk

Introduced before R2006a

1-210

 tf

tf
Convert unconstrained MPC controller to linear transfer function

Syntax
sys=tf(MPCobj)

Description

The tf function computes the transfer function of the linear controller ss(MPCobj) as
an LTI system in tf form corresponding to the MPC controller when the constraints are
not active. The purpose is to use the linear equivalent control in Control System Toolbox
software for sensitivity and other linear analysis.

See Also
ss | zpk

Introduced before R2006a

1-211

1 Functions – Alphabetical List

trim
Compute steady-state value of MPC controller state for given inputs and outputs

Syntax
x = trim(MPCobj,y,u)

Description

The trim function finds a steady-state value for the plant state or the best
approximation in a least squares sense such that:

x x A x x B u u

y y C x x D u u

off off off

off off off

- = - + -

- = - + -

() ()

() ()

Here, xoff, uoff, and yoff are the nominal values of the extended state x, input u, and output
y respectively.

x is returned as an mpcstate object. Specify y and u as doubles. y specifies the
measured and unmeasured output values. u specifies the manipulated variable,
measured disturbance, and unmeasured disturbance values. The values for unmeasured
disturbances must be 0.

trim assumes the disturbance model and measurement noise model to be zero when
computing the steady-state value. The software uses the extended state vector to perform
the calculation.

See Also
mpc | mpcstate

Introduced before R2006a

1-212

 zpk

zpk
Convert unconstrained MPC controller to zero/pole/gain form

Syntax
sys=zpk(MPCobj)

Description

The zpk function computes the zero-pole-gain form of the linear controller ss(MPCobj)
as an LTI system in zpk form corresponding to the MPC controller when the constraints
are not active. The purpose is to use the linear equivalent control in Control System
Toolbox software for sensitivity and other linear analysis.

See Also
ss | tf

Introduced before R2006a

1-213

2

Block Reference

2 Block Reference

MPC Controller

Compute MPC control law

Library

MPC Simulink Library

Description

The MPC Controller block receives the current measured output signal (mo), reference
signal (ref), and optional measured disturbance signal (md). The block computes the
optimal manipulated variables (mv) by solving a quadratic program (QP).

To use the block in simulation and code generation, you must specify an mpc object,
which defines a model predictive controller. This controller must have already been
designed for the plant that it will control.

Because the MPC Controller block uses MATLAB Function blocks, it requires
compilation each time you change the MPC object and block. Also, because MATLAB
does not allow compiled code to reside in any MATLAB product folder, you must use a
non-MATLAB folder to work on your Simulink model when you use MPC blocks.

2-2

 MPC Controller

Dialog Box

The MPC Controller block has the following parameter groupings:

• “Parameters” on page 2-4
• “Required Inports” on page 2-5
• “Required Outports” on page 2-6
• “Additional Inports (General Section)” on page 2-6
• “Additional Outports (General Section)” on page 2-8
• “State Estimation (General Section)” on page 2-10
• “Constraints (Online Features Section)” on page 2-11

2-3

2 Block Reference

• “Weights (Online Features Section)” on page 2-12
• “MV Targets (Online Features Section)” on page 2-14
• “Default Conditions Section” on page 2-14
• “Others Section” on page 2-15

Parameters

MPC controller

You must provide a traditional (implicit) mpc object that defines your controller using one
of the following methods:

• Enter the name of an mpc object in the MPC Controller edit box. This object must be
present in the MATLAB workspace.

If you want to modify the controller settings in a graphical environment, click Design
to open the MPC Designer app. For example, you can:

• Import a new prediction model.
• Change horizons, constraints, and weights.
• Evaluate MPC performance with a linear plant.
• Export the updated controller to the MATLAB workspace.

To see how well the controller works for the nonlinear plant, run a closed-loop
Simulink simulation.

• If you do not have an existing mpc object in the MATLAB workspace, leave the MPC
controller field empty. With the MPC Controller block connected to the plant, click
Design to open MPC Designer. Using the app, linearize the Simulink model at
a specified operating point, and design your controller. For more information, see
“Design MPC Controller in Simulink” and “Linearize Simulink Models Using MPC
Designer”.

To use this design approach, you must have Simulink Control Design software.

If you specified a controller in the MPC Controller field, click Review to review your
design for run-time stability and robustness issues. For more information, see “Review
Model Predictive Controller for Stability and Robustness Issues”.

2-4

 MPC Controller

Initial controller state

Specifies the initial controller state. If this parameter is left blank, the block uses the
nominal values that are defined in the Model.Nominal property of the mpc object. To
override the default, create an mpcstate object in your workspace, and enter its name in
the field.

Required Inports

Measured output or State estimate
If your controller uses default state estimation, this inport is labeled mo. Connect
this inport to the measured plant output signals. The MPC controller uses measured
plant outputs to improve its state estimates.

To enable custom state estimation, in the General section, check Use custom
estimated states instead of measured outputs. Checking this option changes
the label on this inport to x[k|k]. Connect a signal that provides estimates of
the controller state (plant, disturbance, and noise model states). Use custom state
estimates when an alternative estimation technique is considered superior to the
built-in estimator or when the states are fully measurable.

Reference
The ref dimension must not change from one control instant to the next. Each
element must be a real number.

When ref is a 1-by-ny signal, where ny is the number of outputs, there is no reference
signal previewing. The controller applies the current reference values across the
prediction horizon.

To use signal previewing, specify ref as an N-by-ny signal, where N is the number
of time steps for which you are specifying reference values. Here, 1 < £N p , and
p is the prediction horizon. Previewing usually improves performance, since the
controller can anticipate future reference signal changes. The first row of ref
specifies the ny references for the first step in the prediction horizon (at the next
control interval k = 1), and so on for N steps. If N < p, the last row designates
constant reference values for the remaining p - N steps.

For example, suppose ny = 2 and p = 6. At a given control instant, the signal
connected to the ref inport is:

[2 5 ← k=1

2-5

2 Block Reference

 2 6 ← k=2
 2 7 ← k=3
 2 8] ← k=4

The signal informs the controller that:

• Reference values for the first prediction horizon step k = 1 are 2 and 5.
• The first reference value remains at 2, but the second increases gradually.
• The second reference value becomes 8 at the beginning of the fourth step k = 4 in

the prediction horizon.
• Both values remain constant at 2 and 8 respectively for steps 5–6 of the prediction

horizon.

mpcpreview shows how to use reference previewing in a specific case. For
calculation details on the use of the reference signal, see “Optimization Problem”.

Required Outports

Manipulated Variables

The mv outport provides a signal defining the n
u

≥ 1 manipulated variables for
controlling the plant. The controller updates its mv outport by solving a quadratic
program at each control instant.

Additional Inports (General Section)

Measured disturbance

Add an inport (md) to which you connect a measured disturbance signal. The number of
measured disturbances defined for your controller, n

md
≥ 1 , must match the dimensions

of the connected disturbance signal.

The number of measured disturbances must not change from one control instant to the
next, and each disturbance value must be a real number.

When md is a 1-by-nmd signal, there is no measured disturbance previewing. The
controller applies the current disturbance values across the prediction horizon.

To use disturbance previewing, specify md as an N-by-nmd signal, where N is the number
of time steps for which the measured disturbances are known. Here, 1 1< £ +N p ,

2-6

 MPC Controller

and p is the prediction horizon. Previewing usually improves performance, since the
controller can anticipate future disturbances. The first row of md specifies the nmd current
disturbance values (k = 1), with other rows specifying disturbances for subsequent
control intervals. If N < p + 1, the controller applies the last row for the remaining p - N +
1 steps.

For example, suppose nmd = 2 and p = 6. At a given control instant, the signal connected
to the md inport is:

[2 5 ← k=0
 2 6 ← k=1
 2 7 ← k=2
 2 8] ← k=3

This signal informs the controller that:

• The current MD values are 2 and 5 at k = 0.
• The first MD remains at 2, but the second increases gradually.
• The second MD becomes 8 at the beginning of the third stepk = 3 in the prediction

horizon.
• Both values remain constant at 2 and 8 respectively for steps 4–6 of the prediction

horizon.

mpcpreview shows how to use MD previewing in a specific case.

For calculation details, see “MPC Modeling” and “QP Matrices”.

External manipulated variable

Add an inport (ext.mv) to which you connect a vector signal that contains the actual
nu manipulated variables (MV) used in the plant. Use this option when the MV applied
to the plant between time tk–1 and tk is different than the optimal MV computed at the
last control interval, for example due to signal saturation or an override condition. When
enabled, the block uses this signal to correct controller state estimates at tk.

Controller state estimation assumes that the MV is piecewise constant. At time tk, the
ext.mv value must be the effective MV between times tk–1 and tk. For example, if the
MV is actually varying over this interval, you might supply the time-averaged value
evaluated at time tk.

The following example, from the model mpc_bumpless, includes a switch that can
override the controller output with a signal supplied by the operator. Also, the controller

2-7

2 Block Reference

output may saturate. Feeding back the actual MV used in the plant (labeled u(t) in the
example) improves the accuracy of controller state estimates.

If the external MV option is inactive or the ext.mv inport in unconnected, the controller
assumes that its MV output is used in the plant without modification.

Note Using this option can cause an algebraic loop in the Simulink model, since there is
direct feedthrough from the ext.mv inport to the mv outport. To prevent such algebraic
loops, insert a Memory block or Unit Delay block.

Additional Outports (General Section)

Optimal cost

Add an outport (cost) that provides the optimal quadratic programming objective
function value at the current time (a nonnegative scalar). If the controller is performing
well and no constraints have been violated, the value should be small. If the optimization
problem is infeasible, however, the value is meaningless. (See qp.status.)

2-8

 MPC Controller

Optimal control sequence

Add an outport (mv.seq) that provides the computed optimal MV sequence for the entire
prediction horizon from k=0 to k = p-1. If nu is the number of MVs and p is the length
of the prediction horizon, this signal is a p by nu matrix. The first row represents k=0 and
duplicates the block's MV outport.

The following block diagram (from “Understanding Control Behavior by Examining
Optimal Control Sequence”) illustrates how to use this option. The diagram shows how
to collect diagnostic data and send it to the To Workspace2 block, which creates the
variable, useq, in the workspace. Run the example to see how the optimal sequence
evolves with time.

Optimization status

Add an outport (qp.status) that allows you to monitor the status of the QP solver.

If a QP problem is solved successfully at a given control interval, the qp.status output
returns the number of QP solver iterations used in computation. This value is a finite,
positive integer and is proportional to the time required for the calculations. Thus, a
large value means a relatively slow block execution at this time interval.

The QP solver can fail to find an optimal solution for the following reasons:

• qp.status = 0 — The QP solver cannot find a solution within the maximum
number of iterations specified in the mpc object.

• qp.status = -1 — The QP solver detects an infeasible QP problem. See
“Monitoring Optimization Status to Detect Controller Failures” for an example where
a large, sustained disturbance drives the OV outside its specified bounds.

2-9

2 Block Reference

• qp.status = -2 — The QP solver has encountered numerical difficulties in solving
a severely ill-conditioned QP problem.

For all these failure modes, the block holds its mv output at the most recent successful
solution. In a real-time application, you can use status indicator to set an alarm or take
other special action.

The following diagram shows how to use the status indicator to monitor the MPC
Controller block in real time. See “Monitoring Optimization Status to Detect Controller
Failures” for more details.

Estimated plant, disturbance, and noise model states

Add an outport (est.state) to receive the controller state estimates, x[k|k], at each
control instant. These include the plant, disturbance, and noise model states.

State Estimation (General Section)

Use custom estimated states instead of measured outputs

Replace mo with the x[k|k] inport for custom state estimation as described in “Required
Inports” on page 2-5.

2-10

 MPC Controller

Constraints (Online Features Section)

Plant input and output limits

Add inports (umin, umax, ymin, ymax) that you can connect to run-time constraint
signals.

umin andumax are vectors with nu elements. ymin and ymax are vectors with ny
elements.

If any of these inports are unconnected, they are treated as unbounded signals. The
corresponding variable in the mpc object must also be unbounded.

For connected inports, the following rules apply:

• All connected signals must be finite. Simulink does not support infinite signals.
• If a variable is unconstrained in the controller object, the connected value is ignored.

If this check box is not selected, the block uses the constant constraint values stored
within its mpc object.

Note: You cannot specify time-varying constraints at run time using a matrix signal.

2-11

2 Block Reference

Weights (Online Features Section)

A controller intended for real-time applications should have “knobs” you can use to tune
its performance when it operates with the real plant. This group of optional inports
serves that purpose.

The diagram shown below shows three of the MPC Controller tuning inports. In this
simulation context, the inports are tuned using pre-stored signals (the ywt, duwt, and
ECRwt variables in the From Workspace blocks). In practice, you would connect a knob or
similar manual adjustment.

Note: You cannot specify time-varying weights at run time using a matrix signal.

Weights on plant outputs

Add an inport (y.wt) for a vector signal with ny elements. Each element specifies a
nonnegative tuning weight for each controlled output variable (OV). This signal overrides
the MPCobj.Weights.OV property of the mpc object, which establishes the relative
importance of OV reference tracking.

For example, if the preceding controller defined three OVs, the signal connected to the
y.wt inport should be a vector with three elements. If the second element is relatively
large, the controller would place a relatively high priority on making OV(2) track the

2-12

 MPC Controller

r(2) reference signal. Setting a y.wt signal to zero turns off reference tracking for that
OV.

If you do not connect a signal to the y.wt inport, the block uses the OV weights specified
in your MPC object, and these values remain constant.

Weights on manipulated variables

Add an inport (u.wt), whose input is a vector signal defining nu nonnegative weights,
where nu is the number of manipulated variables (MVs). The input overrides the
MPCobj.Weights.MV property of the mpc object, which establishes the relative
importance of MV target tracking.

For example, if your controller defines four MVs and the second u.wt element is
relatively large, the controller would try to keep the second MV close to its target,
specified in MPCobj.MV(2).Target.

If you do not connect a signal to the u.wt inport, the block uses the Weights.MV weights
property specified in your mpc object, and these values remain constant.

Weights on manipulated variable changes

Add an inport (du.wt), for a vector signal defining nu nonnegative weights,
where nu is the number of manipulated variables (MVs). The input overrides the
MPCobj.Weights.MVrate property of the mpc object, which establishes the relative
importance of MV changes.

For example, if your controller defines four MVs and the second du.wt element is
relatively large, the controller would use relatively small changes in the second MV. Such
move suppression makes the controller less aggressive. However, too much suppression
makes it sluggish.

If you do not connect a signal to the du.wt inport, the block uses the Weights.MVrate
property specified in your mpc object, and these values remain constant.

Weight on overall constraint softening

Add an inport (ECR.wt), for a scalar nonnegative signal that overrides the mpc
controller’s MPCobj.Weights.ECR property. This inport has no effect unless your
controller object defines soft constraints whose associated ECR values are nonzero.

2-13

2 Block Reference

If there are soft constraints, increasing the ECR.wt value makes these constraints
relatively harder. The controller then places a higher priority on minimizing the
magnitude of the predicted worst-case constraint violation.

You may not be able to avoid violations of an output variable constraint. Thus, increasing
the ECR.wt value is often counterproductive. Such an increase causes the controller to
pay less attention to its other objectives and does not help reduce constraint violations.
You usually need to tune ECR.wt to achieve the proper balance in relation to the other
control objectives.

MV Targets (Online Features Section)

Targets for manipulated variables

If you want one or more manipulated variables (MV) to track target values that change
with time, use this option to add an mv.target inport. Connect this port to a target
signal with dimension nu, where nu is the number of MVs.

For this to be effective, the corresponding MV(s) must have nonzero penalty weights
(these weights are zero by default).

Default Conditions Section

Specify the default block sample time and signal dimensions for performing simulation,
trimming, or linearization. In these cases, the mv output signal remains at zero. You
must specify default condition values that are compatible with your Simulink model
design.

Note: These default conditions apply only if the MPC Controller field is empty. If you
specify a controller from the MATLAB workspace, the sample time and signal sizes from
the specified controller are used.

Sample Time

Specify the default controller sample time.

Plant Input Signal Sizes

Specify the default signal dimensions for the following input signal types:

2-14

 MPC Controller

• Manipulated variables
• Unmeasured disturbances
• Measured disturbances

Note: You can specify the measured disturbances signal dimension only if, on the
General section, in the Additional Inports section, the Measured disturbance
option is selected.

Plant Output Signal Sizes

Specify the default signal dimensions for the following output signal types:

• Measured outputs
• Unmeasured outputs

Others Section

Block data type

Specify the block data type of the manipulated variables as one of the following:

• double — Double-precision floating point (default)
• single — Single-precision floating point

If you are implementing the block on a single-precision target, specify the output data
type as single.

For an example of double-precision and single-precision simulation and code generation
for an MPC controller, see “Simulation and Code Generation Using Simulink Coder”.

To view the port data types in a model, in the Simulink Editor, select Display > Signals
& PortsPort Data Types.

Inherit sample time

Use the sample time of the parent subsystem as the block sample time. Doing so
allows you to conditionally execute this block inside Function-Call Subsystem or
Triggered Subsystem blocks. For an example, see Using MPC Controller Block Inside
Function-Call and Triggered Subsystems.

2-15

../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html
../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html

2 Block Reference

Note: You must execute Function-Call Subsystem or Triggered Subsystem blocks at the
sample rate of the controller. Otherwise, you can see unexpected results .

To view the sample time of a block, in the Simulink Editor, select Display > Sample
Time. Select Colors, Annotations, or All. For more information, see “View Sample
Time Information”.

Use external signal to enable or disable optimization

Add an inport (switch) whose input specifies whether the controller performs
optimization calculations. If the input signal is zero, the controller behaves normally.
If the input signal is nonzero, the MPC Controller block turns off the controller
optimization calculations. This action reduces computational effort when the controller
output is not needed, such as when the system is operating manually or another
controller has taken over. However, the controller continues to update its internal
state estimates in the usual way. Thus, it is ready to resume optimization calculations
whenever the switch signal returns to zero. While controller optimization is off, the
MPC Controller block passes the current ext.mv signal to the controller output. If the
ext.mv inport is not enabled, the controller output is held at the value it had when
optimization was disabled.

See Also

Blocks
Multiple MPC Controllers

Functions
mpc | mpcstate

Apps
MPC Designer

More About
• “MPC Modeling”
• “Design MPC Controller in Simulink”
• “Switching Controllers Based on Optimal Costs”
• “Understanding Control Behavior by Examining Optimal Control Sequence”

2-16

 MPC Controller

• “Simulation and Code Generation Using Simulink Coder”
• “Simulation and Structured Text Generation Using PLC Coder”

2-17

2 Block Reference

Multiple MPC Controllers
Simulate switching between multiple implicit MPC controllers

Library

MPC Simulink Library

Description

At each control instant the Multiple MPC Controllers block receives the current
measured plant output, reference, and measured plant disturbance (if any). In addition,
it receives a switching signal that selects the active controller from a list of candidate
MPC controllers designed at different operating points within the operating range.
The active controller then solves a quadratic program to determine the optimal plant
manipulated variables for the current input signals.

The Multiple MPC Controllers block enables you to achieve better control when operating
conditions change. Using available measurements, you can detect the current operating
region at run-time and choose the appropriate active controller via the switch inport.
Switching controllers for different operating regions is a common approach to solving
nonlinear control problems using linear control techniques.

To improve efficiency, inactive controllers do not compute optimal control moves.
However, to provide bumpless transfer between controllers, the inactive controllers
continue to perform state estimation.

The Multiple MPC Controllers block lacks several optional features found in the MPC
Controller block, as follows:

2-18

 Multiple MPC Controllers

• You cannot disable optimization. One controller must always be active.
• You cannot initiate a controller design from within the block dialog box, that is there

is no Design button. Design all candidate controllers before configuring the Multiple
MPC Controllers block.

• Similarly, there is no Review button. Instead, use the review command or the MPC
Designer app.

The Adaptive MPC Controller block compensates for operating point variations by
modifying its prediction model. The advantages of the Multiple MPC Controllers block
over Adaptive MPC Controller block are as follows:

• Simpler configuration – There is no need to identify prediction model parameters
using online data.

• Its candidate controllers form a limited set that you can test thoroughly.

Both the Multiple MPC Controllers block and the Adaptive MPC Controller block
enable your control system to adapt to changing operating conditions at run time. The
following table lists the advantages of using each block.

Block Adaptive MPC Controller Multiple MPC Controllers

Adaptation
approach

Update prediction model for a
single controller as operating
conditions change

Switch between multiple
controllers designed for different
operating regions

Advantages • Only need to design a single
controller offline

• Less run-time computational
effort and smaller memory
footprint

• More robust to real-life
changes in plant conditions

• No need for online estimation
of plant model

• Controllers can have different
sample time, horizons, and
weights

• Prediction models can have
different orders or time
domains

• Finite set of candidate
controllers can be tested
thoroughly

2-19

2 Block Reference

Dialog Box

The Multiple MPC Controller block has the following parameter groupings:

• “Parameters” on page 2-21
• “Required Inports” on page 2-21
• “Required Outports” on page 2-23
• “Additional Inports (General Section)” on page 2-23
• “Additional Outports (General Section)” on page 2-24

2-20

 Multiple MPC Controllers

• “State Estimation (General Section)” on page 2-26
• “Constraints (Online Features Section)” on page 2-26
• “Weights (Online Features Section)” on page 2-26
• “MV Targets (Online Features Section)” on page 2-27
• “Others Section” on page 2-28

Parameters

Cell Array of MPC Controllers
Candidate controllers, specified as:

• A cell array of mpc objects.
• A cell array of character vectors, where each element is the name of an mpc object

in the MATLAB workspace.

The specified array must contain at least two candidate controllers. The first entry
in the cell array is the controller that corresponds to a switch input value of 1, the
second corresponds to a switch input value of 2, and so on.

Cell Array of Initial Controller States
Optional initial states for each candidate controller, specified as:

• A cell array of mpcstate objects.
• A cell array of character vectors, where each element is the name of an mpcstate

object in the MATLAB workspace.
• {[],[],...} or {'[]','[]',...} — Use the nominal condition defined in

Model.Nominal as the initial state for each controller.

Required Inports

Controller Selection
The switch input signal must be a scalar integer between 1 and nc, where nc is
the number of specified candidate controllers. At each control instant, this signal
designates the active controller. A switch value of 1 corresponds to the first entry
in the cell array of candidate controllers, a value of 2 corresponds to the second
controller, and so on.

If the switch signal is outside of the range 1 and nc, the previous controller output is
retained.

2-21

2 Block Reference

Measured output or State estimate
If candidate controllers use default state estimation, this inport is labeled mo.
Connect this inport to the measured plant output signals.

If your candidate controllers use custom state estimation, check Use custom
estimated states instead of measured outputs in the General section. Checking
this option changes the label on this inport to x[k|k]. Connect a signal providing
the controller state estimates. (The controller state includes the plant, disturbance,
and noise model states.) The estimates supplied at time tk must be based on the
measurements and other data available at time tk.

All candidate controllers must use the same state estimation option, either default or
custom. When you use custom state estimation, all candidate controllers must have
the same dimension.

Reference
The ref dimension must not change from one control instant to the next. Each
element must be a real number.

When ref is a 1-by-ny signal, where ny is the number of outputs, there is no reference
signal previewing. The controller applies the current reference values across the
prediction horizon.

To use signal previewing, specify ref as an N-by-ny signal, where N is the number
of time steps for which you are specifying reference values. Here, 1 < £N p , and
p is the prediction horizon. Previewing usually improves performance, since the
controller can anticipate future reference signal changes. The first row of ref
specifies the ny references for the first step in the prediction horizon (at the next
control interval k = 1), and so on for N steps. If N < p, the last row designates
constant reference values for the remaining p - N steps.

For example, suppose ny = 2 and p = 6. At a given control instant, the signal
connected to the ref inport is:

[2 5 ← k=1
 2 6 ← k=2
 2 7 ← k=3
 2 8] ← k=4

The signal informs the controller that:

• Reference values for the first prediction horizon step k = 1 are 2 and 5.

2-22

 Multiple MPC Controllers

• The first reference value remains at 2, but the second increases gradually.
• The second reference value becomes 8 at the beginning of the fourth step k = 4 in

the prediction horizon.
• Both values remain constant at 2 and 8 respectively for steps 5–6 of the prediction

horizon.

mpcpreview shows how to use reference previewing in a specific case. For
calculation details on the use of the reference signal, see “Optimization Problem”.

Required Outports

Manipulated Variables

The mv outport provides a signal defining the n
u

≥ 1 manipulated variables for
controlling the plant. The active controller updates its manipulated variable output by
solving a quadratic program at each control instant. The Multiple MPC Controller block
passes the output of the active controller to the mv outport.

Additional Inports (General Section)

Measured disturbance

Add an inport (md) to which you connect a measured disturbance signal. The number of
measured disturbances defined for your controller, n

md
≥ 1 , must match the dimensions

of the connected disturbance signal.

The number of measured disturbances must not change from one control instant to the
next, and each disturbance value must be a real number.

When md is a 1-by-nmd signal, there is no measured disturbance previewing. The
controller applies the current disturbance values across the prediction horizon.

To use disturbance previewing, specify md as an N-by-nmd signal, where N is the number
of time steps for which the measured disturbances are known. Here, 1 1< £ +N p ,
and p is the prediction horizon. Previewing usually improves performance, since the
controller can anticipate future disturbances. The first row of md specifies the nmd current
disturbance values (k = 1), with other rows specifying disturbances for subsequent
control intervals. If N < p + 1, the controller applies the last row for the remaining p - N +
1 steps.

2-23

2 Block Reference

For example, suppose nmd = 2 and p = 6. At a given control instant, the signal connected
to the md inport is:

[2 5 ← k=0
 2 6 ← k=1
 2 7 ← k=2
 2 8] ← k=3

This signal informs the controller that:

• The current MD values are 2 and 5 at k = 0.
• The first MD remains at 2, but the second increases gradually.
• The second MD becomes 8 at the beginning of the third stepk = 3 in the prediction

horizon.
• Both values remain constant at 2 and 8 respectively for steps 4–6 of the prediction

horizon.

mpcpreview shows how to use MD previewing in a specific case.

For calculation details, see “MPC Modeling” and “QP Matrices”.

External manipulated variable

Add an inport (ext.mv) to which you connect a vector signal that contains the actual
manipulated variables (MV) used in the plant. All candidate controllers use this signal
to update their controller state estimates at each control interval. Using this inport
improves state estimation accuracy when the MVs used in the plant differ from the MVs
calculated by the block, for example due to signal saturation or an override condition.

For additional information, see the corresponding section of the MPC Controller block
reference page.

Additional Outports (General Section)

You can configure several optional output signals. At each sampling instant, the active
controller determines their values. The following describes each briefly. For more details,
see the MPC Controller block documentation.

Optimal cost

Add an outport (cost) that provides the optimal quadratic programming objective
function value at the current time (a nonnegative scalar). If the controller is performing

2-24

 Multiple MPC Controllers

well and no constraints have been violated, the value should be small. If the optimization
problem is infeasible, however, the value is meaningless. (See qp.status.)

Optimal control sequence

Add an outport (mv.seq) that provides the active controller’s computed optimal MV
sequence for the entire prediction horizon from k=0 to k = p-1. If nu is the number of
MVs and p is the length of the prediction horizon, this signal is a p by nu matrix. The first
row represents k=0 and duplicates the block's MV outport.

For an example of how to use this option, see “Understanding Control Behavior by
Examining Optimal Control Sequence”.

Optimization status

Add an outport (qp.status) that allows you to monitor the status of the active
controller’s QP solver.

If a QP problem is solved successfully at a given control interval, the qp.status output
returns the number of QP solver iterations used in computation. This value is a finite,
positive integer and is proportional to the time required for the calculations. Therefore, a
large value means a relatively slow block execution for this time interval.

The QP solver can fail to find an optimal solution for the following reasons:

• qp.status = 0 — The QP solver cannot find a solution within the maximum
number of iterations specified in the mpc object.

• qp.status = -1 — The QP solver detects an infeasible QP problem. See
“Monitoring Optimization Status to Detect Controller Failures” for an example where
a large, sustained disturbance drives the OV outside its specified bounds.

• qp.status = -2 — The QP solver has encountered numerical difficulties in solving
a severely ill-conditioned QP problem.

For all these failure modes, the block holds its mv output at the most recent successful
solution. In a real-time application, you can use status indicator to set an alarm or take
other special action.

Estimated plant, disturbance, and noise model states

Add an outport (est.state) for the active controller state estimates, x[k|k], at each
control instant. These estimates include the plant, disturbance, and noise model states.

2-25

2 Block Reference

State Estimation (General Section)

Use custom estimated states instead of measured outputs

Replace mo with the x[k|k] inport for custom state estimation as described in “Required
Inports” on page 2-21. All candidate controllers must use the same state estimation
option, either default or custom. When you use custom state estimation, all candidate
controllers must have the same dimension.

Constraints (Online Features Section)

At each control instant, the optional features described below apply to the active
controller.

Plant input and output limits

Add inports (umin, umax, ymin, ymax) that you can connect to run-time constraint
signals. If this check box is not selected, the block uses the constant constraint values
stored within the active controller.

An unconnected inport is treated as an unbounded signal. The corresponding variable in
the mpc object must be unbounded.

For connected inports, the following rules apply:

• All connected signals must be finite. Simulink does not support infinite signals.
• If a variable is unconstrained in the controller object, the connected value is ignored.

Weights (Online Features Section)

The optional inputs described below function as controller “tuning knobs.” By default (or
when a signal is unconnected), the stored tuning weights of the active controller apply.

When using these online tuning features, care must be taken to prevent an unexpected
change in the active controller. Otherwise, settings intended for a particular candidate
controller can instead retune another.

Weights on plant outputs

Add an inport (y.wt) for a vector signal containing a nonnegative weight for each
controlled output variable (OV). This signal overrides the MPCobj.Weights.OV property

2-26

 Multiple MPC Controllers

of the active controller, which establishes the relative importance of OV reference
tracking.

If you do not connect a signal to the y.wt inport, the block uses the OV weights specified
in the active controller, and these values remain constant.

Weights on manipulated variables

Add an inport (u.wt), whose input is a vector signal defining nu nonnegative weights,
where nu is the number of manipulated variables (MVs). The input overrides the
MPCobj.Weights.MV property of the active controller, which establishes the relative
importance of MV target tracking.

If you do not connect a signal to the u.wt inport, the block uses the Weights.MV weights
property specified in the active controller, and these values remain constant.

Weights on manipulated variable changes

Add an inport (du.wt), for a vector signal defining nu nonnegative weights,
where nu is the number of manipulated variables (MVs). The input overrides the
MPCobj.Weights.MVrate property of the active controller, which establishes the
relative importance of MV changes.

If you do not connect a signal to the du.wt inport, the block uses the Weights.MVrate
property specified in the active controller, and these values remain constant.

Weight on overall constraint softening

Add an inport (ECR.wt), for a scalar nonnegative signal that overrides the active
controller’s MPCobj.Weights.ECR property. This inport has no effect unless the active
controller defines soft constraints whose associated ECR values are nonzero.

MV Targets (Online Features Section)

Targets for manipulated variables

If you want one or more manipulated variables (MV) to track target values that change
with time, use this option to add an mv.target inport. Connect this port to a target
signal with dimension nu, where nu is the number of MVs.

For this to be effective, the corresponding MV(s) must have nonzero penalty weights
(these weights are zero by default).

2-27

2 Block Reference

Others Section

Block data type

Specify the block data type of the manipulated variables as one of the following:

• double — Double-precision floating point (default)
• single — Single-precision floating point

If you are implementing the block on a single-precision target, specify the output data
type as single.

For an example of double-precision and single-precision simulation and code generation
for an MPC controller, see “Simulation and Code Generation Using Simulink Coder”.

To view the port data types in a model, in the Simulink Editor, select Display > Signals
& PortsPort Data Types.

Inherit sample time

Use the sample time of the parent subsystem as the block sample time. Doing so
allows you to conditionally execute this block inside Function-Call Subsystem or
Triggered Subsystem blocks. For an example, see Using MPC Controller Block Inside
Function-Call and Triggered Subsystems.

Note: You must execute Function-Call Subsystem or Triggered Subsystem blocks at the
sample rate of the controller. Otherwise, you can see unexpected results .

To view the sample time of a block, in the Simulink Editor, select Display > Sample
Time. Select Colors, Annotations, or All. For more information, see “View Sample
Time Information”.

See Also

Blocks
MPC Controller | Multiple Explicit MPC Controllers

Functions
mpc | mpcmove | mpcstate

2-28

../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html
../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html

 Multiple MPC Controllers

More About
• “Gain-Scheduled MPC”
• “Design Workflow”
• “Gain Scheduled Implicit and Explicit MPC Control of Mass-Spring System”
• “Gain-Scheduled MPC Control of Nonlinear Chemical Reactor”
• “Simulation and Code Generation Using Simulink Coder”
• “Simulation and Structured Text Generation Using PLC Coder”

Introduced in R2008b

2-29

2 Block Reference

Explicit MPC Controller

Design and simulate explicit model predictive controller

Library

MPC Simulink Library

Description

The Explicit MPC Controller block uses the following input signals:

• Measured plant outputs (mo)
• Reference or setpoint (ref)
• Measured plant disturbance (md), if any

The key difference is that the Explicit MPC Controller block uses a table-lookup control
law during each control interval rather than solving a quadratic program. The reduced
online computational effort is advantageous in applications requiring a short control
interval. The primary trade-off is a heavier offline computational effort to determine the
control law and a larger memory footprint to store it. The combinatorial character of this
computation restricts its use to applications with relatively few input, output, and state
variables, a short prediction horizon, and few output constraints.

The Explicit MPC Controller supports only a subset of optional MPC features, as outlined
in the following table.

2-30

 Explicit MPC Controller

Supported Features Unsupported Features

• Custom state estimation (default state
estimation uses a static Kalman filter)

• Outport for state estimation results
• External manipulated variable feedback

signal inport
• Single-precision block data (default is

double precision)
• Inherited sample time

• Online tuning (penalty weight
adjustments)

• Online constraint adjustments
• Online manipulated variable target

adjustments
• Reference and/or measured disturbance

previewing

Dialog Box

2-31

2 Block Reference

The Explicit MPC Controller block has the following parameter groupings:

• “Parameters” on page 2-32
• “Required Inports” on page 2-32
• “Required Outports” on page 2-33
• “Additional Inports (General Section)” on page 2-33
• “Additional Outports (General Section)” on page 2-34
• “State Estimation (General Section)” on page 2-34
• “Others Section” on page 2-34

Parameters

Explicit MPC Controller

An Explicit MPC controller on page 3-18 object containing the control law to be used.
It must exist in the workspace. Use the generateExplicitMPC command to create this
object.

Initial Controller State

An optional mpcstate object specifying the initial controller state. By default the block
uses the Model.Nominal property of the controller object.

Required Inports

Measured output or State estimate
If your controller uses default state estimation, this inport is labeled mo. Connect
this inport to the measured plant output signals. The MPC controller uses measured
plant outputs to improve its state estimates.

To enable custom state estimation, in the General section, check Use custom
estimated states instead of measured outputs. Checking this option changes
the label on this inport to x[k|k]. Connect a signal that provides estimates of
the controller state (plant, disturbance, and noise model states). Use custom state
estimates when an alternative estimation technique is considered superior to the
built-in estimator or when the states are fully measurable.

Reference

2-32

 Explicit MPC Controller

At each control instant, the ref signal must contain the current reference values
(targets or setpoints) for the ny output variables, where ny is the total number of
outputs, including measured and unmeasured outputs. Since this block does not
support reference previewing, ref cannot be defined as a matrix.

Required Outports

Manipulated Variables

The mv outport provides a signal defining the n
u

≥ 1 manipulated variables for
controlling the plant. The controller updates its mv outport at each control instant
using the control law contained in the explicit MPC controller object. If the control law
evaluation fails, this signal is unchanged; that is, it is held at the previous successful
result.

Additional Inports (General Section)

Measured disturbance

Add an inport (md) to which you can connect a vector signal containing nmd elements,
where nmd is the number of measured disturbances.

Since this block does not support measured disturbance previewing, md cannot be defined
as a matrix.

External manipulated variable

Add an inport (ext.mv) to which you connect a vector signal that contains the actual
manipulated variables (MV) used in the plant. The controller uses this signal to update
their controller state estimates at each control interval. Using this inport improves state
estimation accuracy when the MVs used in the plant differ from the MVs calculated by
the block, for example due to signal saturation or an override condition.

Note Using this option can cause an algebraic loop in the Simulink model, since there is
direct feedthrough from the ext.mv inport to the mv outport. To prevent such algebraic
loops, insert a Memory block or Unit Delay block.

For additional information, see the corresponding section of the MPC Controller block
reference page.

2-33

2 Block Reference

Additional Outports (General Section)

Status of piecewise affine function evaluation

Add an outport (status) that indicates whether the latest explicit MPC control-law
evaluation succeeded. The outport provides a scalar signal that has one of the following
values:

• 1 — Successful explicit control law evaluation
• 0 — Failure: One or more control law parameters out of range.
• –1 — Undefined: Control law parameters were within the valid range but an

extrapolation was necessary.

If status is either 0 or –1, the mv outport remains at the last known good value.

Region number of evaluated piecewise affine function

Add an outport (region) providing the index of the polyhedral region used in the latest
explicit control law evaluation (a scalar). If the control law evaluation fails, the signal at
this outport equals zero.

Estimated plant, disturbance, and noise model states

Add an outport (est.state) for the controller state estimates, x[k|k], at each control
instant. These estimates include the plant, disturbance, and noise model states.

State Estimation (General Section)

Use custom estimated states instead of measured outputs

Replace mo with the x[k|k] inport for custom state estimation as described in “Required
Inports” on page 2-32.

Others Section

Block data type

Specify the block data type of the manipulated variables as one of the following:

2-34

 Explicit MPC Controller

• double — Double-precision floating point (default)
• single — Single-precision floating point

If you are implementing the block on a single-precision target, specify the output data
type as single.

For an example of double-precision and single-precision simulation and code generation
for an MPC controller, see “Simulation and Code Generation Using Simulink Coder”.

To view the port data types in a model, in the Simulink Editor, select Display > Signals
& PortsPort Data Types.

Inherit sample time

Use the sample time of the parent subsystem as the block sample time. Doing so
allows you to conditionally execute this block inside Function-Call Subsystem or
Triggered Subsystem blocks. For an example, see Using MPC Controller Block Inside
Function-Call and Triggered Subsystems.

Note: You must execute Function-Call Subsystem or Triggered Subsystem blocks at the
sample rate of the controller. Otherwise, you can see unexpected results .

To view the sample time of a block, in the Simulink Editor, select Display > Sample
Time. Select Colors, Annotations, or All. For more information, see “View Sample
Time Information”.

Use external signal to enable controller evaluation

Add an inport (switch) whose input specifies whether the controller evaluates its control
law. If the input signal is zero, the controller behaves normally. If the input signal is
nonzero, the Explicit MPC Controller block turns off controller evaluation. This action
reduces computational effort when the controller output is not needed, such as when
the system is operating manually or another controller has taken over. However, the
controller continues to update its internal state estimates in the usual way. Thus, it is
ready to resume optimization calculations whenever the switch signal returns to zero.
While controller evaluation is off, the MPC Controller block passes the current ext.mv
signal to the controller output. If the ext.mv inport is not enabled, the controller output
is held at the value it had when evaluation was disabled.

2-35

../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html
../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html

2 Block Reference

See Also

Blocks
MPC Controller | Multiple Explicit MPC Controllers

Functions
generateExplicitMPC | mpc | mpcmoveExplicit | mpcstate

More About
• “Explicit MPC”
• “Design Workflow for Explicit MPC”
• “Explicit MPC Control of a Single-Input-Single-Output Plant”
• “Explicit MPC Control of an Aircraft with Unstable Poles”
• “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”

2-36

 Adaptive MPC Controller

Adaptive MPC Controller

Design and simulate adaptive and time-varying model predictive controllers

Library

MPC Simulink Library

Description

The Adaptive MPC Controller block uses the following input signals:

• Measured plant outputs (mo)
• Reference or setpoint (ref)
• Measured plant disturbance (md), if any

In addition, the required model input signal specifies the prediction model to use when
solving the quadratic program (QP) for the optimal plant manipulated variables mv. The
linear prediction model can change at each control interval in response to changes in the
real plant at run time. The prediction model can represent a single LTI plant used for all
prediction steps (adaptive MPC mode) or an array of LTI plants for different prediction
steps (time-varying MPC mode). Two common ways to modify this model are as follows:

• Given a nonlinear plant model, linearize it at the current operating point.
• Use plant data to estimate parameters in an empirical linear-time-varying (LTV)

model.

2-37

2 Block Reference

By default, the block estimates its prediction model states. Since the prediction model
parameters change at run time, the static Kalman filter used in the MPC Controller
block is inappropriate. Instead, the Adaptive MPC Controller block uses a linear-time-
varying Kalman filter (LTVKF). For more information, see “Adaptive MPC”.

In all other ways, the Adaptive MPC Controller block mimics the MPC Controller block.
Since the adaptive version involves additional overhead, use the MPC Controller block
unless you need to control a nonlinear plant across a wide range of operating conditions
where plant dynamics vary significantly.

Both the Adaptive MPC Controller block and the Multiple MPC Controllers block
enable your control system to adapt to changing operating conditions at run time. The
following table lists the advantages of using each block.

Block Adaptive MPC Controller Multiple MPC Controllers

Adaptation
approach

Update prediction model for a
single controller as operating
conditions change

Switch between multiple
controllers designed for different
operating regions

Advantages • Only need to design a single
controller offline

• Less run-time computational
effort and smaller memory
footprint

• More robust to real-life
changes in plant conditions

• No need for online estimation
of plant model

• Controllers can have different
sample time, horizons, and
weights

• Prediction models can have
different orders or time
domains

• Finite set of candidate
controllers can be tested
thoroughly

2-38

 Adaptive MPC Controller

Dialog Box

The Adaptive MPC Controller block has the following parameter groupings:

• “Parameters” on page 2-40
• “Required Inports” on page 2-40
• “Required Outports” on page 2-43
• “Additional Inports (General Section)” on page 2-43
• “Additional Outports (General Section)” on page 2-45
• “State Estimation (General Section)” on page 2-46
• “Prediction Model (Online Features Section)” on page 2-46
• “Constraints (Online Features Section)” on page 2-46

2-39

2 Block Reference

• “Weights (Online Features Section)” on page 2-47
• “MV Targets (Online Features Section)” on page 2-48
• “Others Section” on page 2-49

Parameters

Adaptive MPC Controller

A traditional (implicit) mpc controller object designed at the nominal operating point. At
run time, the controller replaces the original prediction model (A, B, C, D) and nominal
values (U, Y, X, DX) with the data specified in the model inport at each control instant.

A traditional (implicit) mpc controller object whose prediction model is modified at each
control instant. By default, the block assumes all other controller object properties (for
example tuning weights, constraints) are constant. You can override this assumption
using the options in the Online Features section.

The following restrictions apply to the mpc controller object:

• It must exist in the MATLAB workspace.
• Its prediction model must be an LTI discrete-time, state-space object with no delays.

Use the absorbDelay command to convert delays to discrete states. The dimensions
of the A, B, C, and D matrices in the prediction determine the dimensions required by
the model inport signal.

Initial controller state

Specifies the initial controller state. If this parameter is left blank, the block uses the
nominal values that are defined in the Model.Nominal property of the mpc object. To
override the default, create an mpcstate object in your workspace, and enter its name in
the field.

Required Inports

Model
Connect a bus signal to the model inport. This signal modifies the controller object
Model.Plant and Model.Nominal properties at the beginning of each control
interval.

2-40

 Adaptive MPC Controller

The Adaptive MPC Controller requires Model.Plant to be an LTI discrete-time
state-space object with no delays. The following command extracts the state-space
matrices comprising such a model:

[A,B,C,D] = ssdata(MPCobj.Model.Plant)

The purpose of the model inport is to replace these matrices with new ones having
the same dimensions, and representing the same control interval. You must also
retain the sequence in which the input, output, and state variables appear in
Model.Plant.

When operating in:

• Adaptive MPC mode, the bus you connect to the model inport must contain the
following signals, each identified by the specified name:

• A — nx-by-nx matrix signal, where nx is the number of plant model states.
• B — nx-by-nu matrix signal, where nu is the total number of plant model

inputs (i.e., manipulated variables, measured disturbances, and unmeasured
disturbances).

• C — ny-by-nx matrix signal, where ny is the number of plant model outputs.
• D — ny-by-nu matrix signal.
• X — Vector signal of length nx, replacing the controller Model.Nominal.X

property.
• Y — Vector signal of length ny, replacing the controller Model.Nominal.Y

property.
• U — Vector signal of length nu, replacing the controller Model.Nominal.U

property.
• DX — Vector signal of length nx, replacing the controller Model.Nominal.DX

property. It must be appropriate for use with a discrete-time model of the
assumed control interval. For more information, see “Adaptive MPC”.

• Time-varying MPC mode, the bus you connect to the model inport must contain
the following 3–dimensional bus signals:

• A — nx-by-nx-by-(p+1) matrix signal
• B — nx-by-nu-by-(p+1) matrix signal
• C — ny-by-nx-by-(p+1)

2-41

2 Block Reference

• D — ny-by-nu-by-(p+1) matrix signal
• X — nx-by-(p+1) matrix signal
• Y — ny-by-(p+1) matrix signal
• U — nu-by-(p+1) matrix signal
• DX — nx-by-(p+1) matrix signal

Here, p is the controller prediction horizon. For each signal, specify p+1 values
representing the model and nominal conditions at each step of the prediction
horizon. For more information, see “Time-Varying MPC”.

One way to form the bus is to use a Bus Creator block.
Measured output or State estimate

If your controller uses default state estimation, this inport is labeled mo. Connect
this inport to the measured plant output signals. The MPC controller uses measured
plant outputs to improve its state estimates.

To enable custom state estimation, in the General section, check Use custom
estimated states instead of measured outputs. Checking this option changes
the label on this inport to x[k|k]. Connect a signal that provides estimates of
the controller state (plant, disturbance, and noise model states). Use custom state
estimates when an alternative estimation technique is considered superior to the
built-in estimator or when the states are fully measurable.

Reference
The ref dimension must not change from one control instant to the next. Each
element must be a real number.

When ref is a 1-by-ny signal, where ny is the number of outputs, there is no reference
signal previewing. The controller applies the current reference values across the
prediction horizon.

To use signal previewing, specify ref as an N-by-ny signal, where N is the number
of time steps for which you are specifying reference values. Here, 1 < £N p , and
p is the prediction horizon. Previewing usually improves performance, since the
controller can anticipate future reference signal changes. The first row of ref
specifies the ny references for the first step in the prediction horizon (at the next
control interval k = 1), and so on for N steps. If N < p, the last row designates
constant reference values for the remaining p - N steps.

2-42

 Adaptive MPC Controller

For example, suppose ny = 2 and p = 6. At a given control instant, the signal
connected to the ref inport is:

[2 5 ← k=1
 2 6 ← k=2
 2 7 ← k=3
 2 8] ← k=4

The signal informs the controller that:

• Reference values for the first prediction horizon step k = 1 are 2 and 5.
• The first reference value remains at 2, but the second increases gradually.
• The second reference value becomes 8 at the beginning of the fourth step k = 4 in

the prediction horizon.
• Both values remain constant at 2 and 8 respectively for steps 5–6 of the prediction

horizon.

mpcpreview shows how to use reference previewing in a specific case. For
calculation details on the use of the reference signal, see “Optimization Problem”.

Required Outports

Manipulated Variables

The mv outport provides a signal defining the n
u

≥ 1 manipulated variables for
controlling the plant. The controller updates its mv outport by solving a quadratic
program at each control instant.

Additional Inports (General Section)

Measured disturbance

Add an inport (md) to which you connect a measured disturbance signal. The number of
measured disturbances defined for your controller, n

md
≥ 1 , must match the dimensions

of the connected disturbance signal.

The number of measured disturbances must not change from one control instant to the
next, and each disturbance value must be a real number.

When md is a 1-by-nmd signal, there is no measured disturbance previewing. The
controller applies the current disturbance values across the prediction horizon.

2-43

2 Block Reference

To use disturbance previewing, specify md as an N-by-nmd signal, where N is the number
of time steps for which the measured disturbances are known. Here, 1 1< £ +N p ,
and p is the prediction horizon. Previewing usually improves performance, since the
controller can anticipate future disturbances. The first row of md specifies the nmd current
disturbance values (k = 1), with other rows specifying disturbances for subsequent
control intervals. If N < p + 1, the controller applies the last row for the remaining p - N +
1 steps.

For example, suppose nmd = 2 and p = 6. At a given control instant, the signal connected
to the md inport is:

[2 5 ← k=0
 2 6 ← k=1
 2 7 ← k=2
 2 8] ← k=3

This signal informs the controller that:

• The current MD values are 2 and 5 at k = 0.
• The first MD remains at 2, but the second increases gradually.
• The second MD becomes 8 at the beginning of the third stepk = 3 in the prediction

horizon.
• Both values remain constant at 2 and 8 respectively for steps 4–6 of the prediction

horizon.

mpcpreview shows how to use MD previewing in a specific case.

For calculation details, see “MPC Modeling” and “QP Matrices”.

External manipulated variable

Add an inport (ext.mv) to which you connect a vector signal that contains the actual
manipulated variables (MV) used in the plant. The controller uses this signal to update
their controller state estimates at each control interval. Using this inport improves state
estimation accuracy when the MVs used in the plant differ from the MVs calculated by
the block, for example due to signal saturation or an override condition.

Note Using this option can cause an algebraic loop in the Simulink model, since there is
direct feedthrough from the ext.mv inport to the mv outport. To prevent such algebraic
loops, insert a Memory block or Unit Delay block.

2-44

 Adaptive MPC Controller

For additional information, see the corresponding section of the MPC Controller block
reference page.

Additional Outports (General Section)

Optimal cost

Add an outport (cost) that provides the optimal quadratic programming objective
function value at the current time (a nonnegative scalar). If the controller is performing
well and no constraints have been violated, the value should be small. If the optimization
problem is infeasible, however, the value is meaningless. (See qp.status.)

Optimal control sequence

Add an outport (mv.seq) that provides the computed optimal MV sequence for the entire
prediction horizon from k=0 to k = p-1. If nu is the number of MVs and p is the length
of the prediction horizon, this signal is a p by nu matrix. The first row represents k=0 and
duplicates the block's MV outport.

For an example of how to use this option, see “Understanding Control Behavior by
Examining Optimal Control Sequence”.

Optimization status

Add an outport (qp.status) that allows you to monitor the status of the QP solver.

If a QP problem is solved successfully at a given control interval, the qp.status output
returns the number of QP solver iterations used in computation. This value is a finite,
positive integer and is proportional to the time required for the calculations. Thus, a
large value means a relatively slow block execution at this time interval.

The QP solver can fail to find an optimal solution for the following reasons:

• qp.status = 0 — The QP solver cannot find a solution within the maximum
number of iterations specified in the mpc object.

• qp.status = -1 — The QP solver detects an infeasible QP problem. See
“Monitoring Optimization Status to Detect Controller Failures” for an example where
a large, sustained disturbance drives the OV outside its specified bounds.

• qp.status = -2 — The QP solver has encountered numerical difficulties in solving
a severely ill-conditioned QP problem.

2-45

2 Block Reference

For all these failure modes, the block holds its mv output at the most recent successful
solution. In a real-time application, you can use status indicator to set an alarm or take
other special action.

Estimated plant, disturbance, and noise model states

Add an outport (est.state) to receive the controller state estimates, x[k|k], at each
control instant. These include the plant, disturbance, and noise model states.

State Estimation (General Section)

Use custom estimated states instead of measured outputs

Replace mo with the x[k|k] inport for custom state estimation as described in “Required
Inports” on page 2-40.

Prediction Model (Online Features Section)

Linear Time-Varying (LTV) plants

To operate your controller in time-varying MPC mode, select this option. When operating
in this mode, connect a 3–dimensional bus signal to the model inport as described in
“Required Inports” on page 2-40.

For an example, see “Time-Varying MPC Control of a Time-Varying Plant”.

Constraints (Online Features Section)

Plant input and output limits

Add inports (umin, umax, ymin, ymax) that you can connect to run-time constraint
signals.

umin andumax are vectors with nu elements. ymin and ymax are vectors with ny
elements.

If any of these inports are unconnected, they are treated as unbounded signals. The
corresponding variable in the mpc object must also be unbounded.

For connected inports, the following rules apply:

2-46

 Adaptive MPC Controller

• All connected signals must be finite. Simulink does not support infinite signals.
• If a variable is unconstrained in the controller object, the connected value is ignored.

If this check box is not selected, the block uses the constant constraint values stored
within its mpc object.

Note: You cannot specify time-varying constraints at run time using a matrix signal.

Weights (Online Features Section)

A controller intended for real-time applications should have “knobs” you can use to tune
its performance when it operates with the real plant. This group of optional inports
serves that purpose.

Weights on plant outputs

Add an inport (y.wt) for a vector signal with ny elements. Each element specifies a
nonnegative tuning weight for each controlled output variable (OV). This signal overrides
the MPCobj.Weights.OV property of the mpc object, which establishes the relative
importance of OV reference tracking.

For example, if the preceding controller defined three OVs, the signal connected to the
y.wt inport should be a vector with three elements. If the second element is relatively
large, the controller would place a relatively high priority on making OV(2) track the
r(2) reference signal. Setting a y.wt signal to zero turns off reference tracking for that
OV.

If you do not connect a signal to the y.wt inport, the block uses the OV weights specified
in your MPC object, and these values remain constant.

Weights on manipulated variables

Add an inport (u.wt), whose input is a vector signal defining nu nonnegative weights,
where nu is the number of manipulated variables (MVs). The input overrides the
MPCobj.Weights.MV property of the mpc object, which establishes the relative
importance of MV target tracking.

For example, if your controller defines four MVs and the second u.wt element is
relatively large, the controller would try to keep the second MV close to its target,
specified in MPCobj.MV(2).Target.

2-47

2 Block Reference

If you do not connect a signal to the u.wt inport, the block uses the Weights.MV weights
property specified in your mpc object, and these values remain constant.

Weights on manipulated variable changes

Add an inport (du.wt), for a vector signal defining nu nonnegative weights,
where nu is the number of manipulated variables (MVs). The input overrides the
MPCobj.Weights.MVrate property of the mpc object, which establishes the relative
importance of MV changes.

For example, if your controller defines four MVs and the second du.wt element is
relatively large, the controller would use relatively small changes in the second MV. Such
move suppression makes the controller less aggressive. However, too much suppression
makes it sluggish.

If you do not connect a signal to the du.wt inport, the block uses the Weights.MVrate
property specified in your mpc object, and these values remain constant.

Weight on overall constraint softening

Add an inport (ECR.wt), for a scalar nonnegative signal that overrides the mpc
controller’s MPCobj.Weights.ECR property. This inport has no effect unless your
controller object defines soft constraints whose associated ECR values are nonzero.

If there are soft constraints, increasing the ECR.wt value makes these constraints
relatively harder. The controller then places a higher priority on minimizing the
magnitude of the predicted worst-case constraint violation.

You may not be able to avoid violations of an output variable constraint. Thus, increasing
the ECR.wt value is often counterproductive. Such an increase causes the controller to
pay less attention to its other objectives and does not help reduce constraint violations.
You usually need to tune ECR.wt to achieve the proper balance in relation to the other
control objectives.

MV Targets (Online Features Section)

Targets for manipulated variables

If you want one or more manipulated variables (MV) to track target values that change
with time, use this option to add an mv.target inport. Connect this port to a target
signal with dimension nu, where nu is the number of MVs.

2-48

 Adaptive MPC Controller

For this to be effective, the corresponding MV(s) must have nonzero penalty weights
(these weights are zero by default).

Others Section

Block data type

Specify the block data type of the manipulated variables as one of the following:

• double — Double-precision floating point (default)
• single — Single-precision floating point

If you are implementing the block on a single-precision target, specify the output data
type as single.

For an example of double-precision and single-precision simulation and code generation
for an MPC controller, see “Simulation and Code Generation Using Simulink Coder”.

To view the port data types in a model, in the Simulink Editor, select Display > Signals
& PortsPort Data Types.

Inherit sample time

Use the sample time of the parent subsystem as the block sample time. Doing so
allows you to conditionally execute this block inside Function-Call Subsystem or
Triggered Subsystem blocks. For an example, see Using MPC Controller Block Inside
Function-Call and Triggered Subsystems.

Note: You must execute Function-Call Subsystem or Triggered Subsystem blocks at the
sample rate of the controller. Otherwise, you can see unexpected results .

To view the sample time of a block, in the Simulink Editor, select Display > Sample
Time. Select Colors, Annotations, or All. For more information, see “View Sample
Time Information”.

Use external signal to enable or disable optimization

Add an inport (switch) whose input specifies whether the controller performs
optimization calculations. If the input signal is zero, the controller behaves normally.

2-49

../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html
../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html

2 Block Reference

If the input signal is nonzero, the MPC Controller block turns off the controller
optimization calculations. This action reduces computational effort when the controller
output is not needed, such as when the system is operating manually or another
controller has taken over. However, the controller continues to update its internal
state estimates in the usual way. Thus, it is ready to resume optimization calculations
whenever the switch signal returns to zero. While controller optimization is off, the
MPC Controller block passes the current ext.mv signal to the controller output. If the
ext.mv inport is not enabled, the controller output is held at the value it had when
optimization was disabled.

See Also

Blocks
MPC Controller | Multiple MPC Controllers

Functions
mpc | mpcmoveAdaptive | mpcstate

More About
• “Adaptive MPC”
• “Time-Varying MPC”
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive

Linearization”
• “Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model

Estimation”
• “Time-Varying MPC Control of a Time-Varying Plant”

2-50

 Multiple Explicit MPC Controllers

Multiple Explicit MPC Controllers

Simulate switching between multiple explicit MPC controllers

Library

MPC Simulink Library

Description

The Multiple Explicit MPC Controllers block uses the following input signals:

• Measured plant outputs (mo)
• Reference or setpoint (ref)
• Measured plant disturbance (md), if any
• Switching signal (switch)

The switching signal selects the active controller from among a list of two or more
candidate controllers. However, for the Multiple Explicit MPC Controllers block, the
candidates are explicit MPC controllers. These controllers reduce online computational
effort by using a table-lookup control law during each control interval rather than solving
a quadratic program. For more information, see Explicit MPC Controller.

The Multiple Explicit MPC Controllers block enables you to transition between multiple
explicit MPC controllers in real time based on the current operating conditions.
Typically, you design each controller for a particular region of the operating space.

2-51

2 Block Reference

Using available measurements, you detect the current operating region and select the
appropriate active controller via the switch inport.

To improve efficiency, inactive controllers do not evaluate their control law. However,
to provide bumpless transfer between controllers, the inactive controllers continue to
perform state estimation.

Like for the Multiple MPC Controllers block, you cannot disable evaluation for the
Multiple Explicit MPC Controllers. One controller must always be active.

Like the Explicit MPC Controller block, the Multiple Explicit MPC Controllers supports
only a subset of optional MPC features, as outlined in the following table.

Supported Features Unsupported Features

• Custom state estimation (default state
estimation uses a static Kalman filter)

• Outport for state estimation results
• External manipulated variable feedback

signal inport
• Single-precision block data (default is

double precision)
• Inherited sample time

• Online tuning (penalty weight
adjustments)

• Online constraint adjustments
• Online manipulated variable target

adjustments
• Reference and/or measured disturbance

previewing

2-52

 Multiple Explicit MPC Controllers

Dialog Box

The Multiple Explicit MPC Controller block has the following parameter groupings:

• “Parameters” on page 2-54
• “Required Inports” on page 2-54
• “Required Outports” on page 2-55
• “Additional Inports (General Section)” on page 2-55
• “Additional Outports (General Section)” on page 2-56
• “State Estimation (General Section)” on page 2-56
• “Others Section” on page 2-57

2-53

2 Block Reference

Parameters

Cell Array of Explicit MPC Controllers
Candidate controllers, specified as:

• A cell array of Explicit MPC controller on page 3-18 objects. Use the
generateExplicitMPC command to create these objects.

• A cell array of character vectors, where each element is the name of an explicit
MPC controller object in the MATLAB workspace.

The specified array must contain at least two candidate controllers. The first entry
in the cell array is the controller that corresponds to a switch input value of 1, the
second corresponds to a switch input value of 2, and so on.

Cell Array of Initial Controller States
Optional initial states for each candidate controller, specified as:

• A cell array of mpcstate objects.
• A cell array of character vectors, where each element is the name of an mpcstate

object in the MATLAB workspace.
• {[],[],...} or {'[]','[]',...} — Use the nominal condition defined in

Model.Nominal as the initial state for each controller.

Required Inports

Controller Selection
The switch input signal must be a scalar integer between 1 and nc, where nc is
the number of specified candidate controllers. At each control instant, this signal
designates the active controller. A switch value of 1 corresponds to the first entry
in the cell array of candidate controllers, a value of 2 corresponds to the second
controller, and so on.

If the switch signal is outside of the range 1 and nc, the previous controller output is
retained.

Measured output or State estimate
If candidate controllers use default state estimation, this inport is labeled mo.
Connect this inport to the measured plant output signals.

If your candidate controllers use custom state estimation, check Use custom
estimated states instead of measured outputs in the General section. Checking

2-54

 Multiple Explicit MPC Controllers

this option changes the label on this inport to x[k|k]. Connect a signal providing
the controller state estimates. (The controller state includes the plant, disturbance,
and noise model states.) The estimates supplied at time tk must be based on the
measurements and other data available at time tk.

All candidate controllers must use the same state estimation option, either default or
custom. When you use custom state estimation, all candidate controllers must have
the same dimension.

Reference
At each control instant, the ref signal must contain the current reference values
(targets or setpoints) for the ny output variables, where ny is the total number of
outputs, including measured and unmeasured outputs. Since this block does not
support reference previewing, ref cannot be defined as a matrix.

Required Outports

Manipulated Variables

The mv outport provides a signal defining the n
u

≥ 1 manipulated variables for
controlling the plant. The active controller updates its manipulated variable output
at each control instant using the control law contained in its explicit MPC controller
object. If the control law evaluation fails, this signal is unchanged; that is, it is held at
the previous successful result. The Multiple Explicit MPC Controller block passes the
output of the active controller to the mv outport.

Additional Inports (General Section)

Measured disturbance

Add an inport (md) to which you can connect a vector signal containing nmd elements,
where nmd is the number of measured disturbances.

Since this block does not support measured disturbance previewing, md cannot be defined
as a matrix.

External manipulated variable

Add an inport (ext.mv) to which you connect a vector signal that contains the actual
manipulated variables (MV) used in the plant. All candidate controllers use this signal

2-55

2 Block Reference

to update their controller state estimates at each control interval. Using this inport
improves state estimation accuracy when the MVs used in the plant differ from the MVs
calculated by the block, for example due to signal saturation or an override condition.

For additional information, see the corresponding section of the MPC Controller block
reference page.

Additional Outports (General Section)

Status of piecewise affine function evaluation

Add an outport (status) that indicates whether the latest explicit MPC control-law
evaluation succeeded. The outport provides a scalar signal that has one of the following
values:

• 1 — Successful explicit control law evaluation
• 0 — Failure: One or more control law parameters out of range.
• –1 — Undefined: Control law parameters were within the valid range but an

extrapolation was necessary.

If status is either 0 or –1, the mv outport remains at the last known good value.

Region number of evaluated piecewise affine function

Add an outport (region) providing the index of the polyhedral region used in the latest
explicit control law evaluation (a scalar). If the control law evaluation fails, the signal at
this outport equals zero.

Estimated plant, disturbance, and noise model states

Add an outport (est.state) for the controller state estimates, x[k|k], at each control
instant. These estimates include the plant, disturbance, and noise model states.

State Estimation (General Section)

Use custom estimated states instead of measured outputs

Replace mo with the x[k|k] inport for custom state estimation as described in “Required
Inports” on page 2-54. All candidate controllers must use the same state estimation
option, either default or custom. When you use custom state estimation, all candidate
controllers must have the same dimension.

2-56

 Multiple Explicit MPC Controllers

Others Section

Block data type

Specify the block data type of the manipulated variables as one of the following:

• double — Double-precision floating point (default)
• single — Single-precision floating point

If you are implementing the block on a single-precision target, specify the output data
type as single.

For an example of double-precision and single-precision simulation and code generation
for an MPC controller, see “Simulation and Code Generation Using Simulink Coder”.

To view the port data types in a model, in the Simulink Editor, select Display > Signals
& PortsPort Data Types.

Inherit sample time

Use the sample time of the parent subsystem as the block sample time. Doing so
allows you to conditionally execute this block inside Function-Call Subsystem or
Triggered Subsystem blocks. For an example, see Using MPC Controller Block Inside
Function-Call and Triggered Subsystems.

Note: You must execute Function-Call Subsystem or Triggered Subsystem blocks at the
sample rate of the controller. Otherwise, you can see unexpected results .

To view the sample time of a block, in the Simulink Editor, select Display > Sample
Time. Select Colors, Annotations, or All. For more information, see “View Sample
Time Information”.

See Also

Blocks
Explicit MPC Controller | Multiple MPC Controllers

Functions
mpc | mpcmove | mpcstate

2-57

../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html
../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html

2 Block Reference

More About
• “Simulation and Code Generation Using Simulink Coder”
• “Simulation and Structured Text Generation Using PLC Coder”

Introduced in R2016b

2-58

3

Object Reference

• “MPC Controller Object” on page 3-2
• “MPC Simulation Options Object” on page 3-13
• “MPC State Object” on page 3-16
• “Explicit MPC Controller Object” on page 3-18

3 Object Reference

MPC Controller Object

All of the parameters defining the traditional (implicit) MPC control law are stored in an
MPC object, whose properties are listed in the following table.

MPC Controller Object

Property Description

ManipulatedVariables (or MV or
Manipulated or Input)

Scale factors, input bounds, input-rate
bounds, corresponding ECR values, target
values, signal names, and units.

OutputVariables (or OV or Controlled
or Output)

Scale factors, input bounds, input-rate
bounds, corresponding ECR values, target
values, signal names, and units.

DisturbanceVariables (or DV or
Disturbance)

Disturbance scale factors, names, and units

Weights Weights used in computing the
performance (cost) function

Model Plant, input disturbance, and output noise
models, and nominal conditions.

Ts Controller sample time
Optimizer Parameters controlling the QP solver
PredictionHorizon Prediction horizon
ControlHorizon Number of free control moves or vector of

blocking moves
History Creation time
Notes Text or comments about the MPC

controller object
UserData Any additional data

ManipulatedVariables

ManipulatedVariables (or MV or Manipulated or Input) is an nu-dimensional array
of structures (nu = number of manipulated variables), one per manipulated variable.
Each structure has the fields described in the following table, where p denotes the

3-2

 MPC Controller Object

prediction horizon. Unless indicated otherwise, numerical values are in engineering
units.

Manipulated Variable Structure

Field Name Content Default

ScaleFactor Nonnegative scale factor for this MV 1
Min 1 to p length vector of lower bounds on this

MV
-Inf

Max 1 to p length vector of upper bounds on this
MV

Inf

MinECR 1 to p length vector of nonnegative
parameters specifying the Min bound
softness (0 = hard).

0 (dimensionless)

MaxECR 1 to p length vector of nonnegative
parameters specifying the Max bound
softness (0 = hard).

0 (dimensionless)

Target 1 to p length vector of target values for this
MV

'nominal'

RateMin 1 to p length vector of lower bounds on the
interval-to-interval change for this MV

-Inf

RateMax 1 to p length vector of upper bounds on the
interval-to-interval change for this MV

Inf

RateMinECR 1 to p length vector of nonnegative
parameters specifying the RateMin bound
softness (0 = hard).

0 (dimensionless)

RateMaxECR 1 to p length vector of nonnegative
parameters specifying the RateMax bound
softness (0 = hard).

0 (dimensionless)

Name Read-only MV signal name (character
vector)

InputName of LTI plant
model

Units Read-only MV signal units (character
vector)

InputUnit of LTI plant
model

3-3

3 Object Reference

Note Rates refer to the difference Δu(k)=u(k)-u(k-1). Constraints and weights based on
derivatives du/dt of continuous-time input signals must be properly reformulated for the
discrete-time difference Δu(k), using the approximation du/dt ≅ Δu(k)/Ts.

OutputVariables

OutputVariables (or OV or Controlled or Output) is an ny-dimensional array
of structures (ny = number of outputs), one per output signal. Each structure has the
fields described in the following table. p denotes the prediction horizon. Unless specified
otherwise, values are in engineering units.

Output Variable Structure

Field Name Content Default

ScaleFactor Nonnegative scale factor for this OV 1
Min 1 to p length vector of lower bounds on this

OV
-Inf

Max 1 to p length vector of upper bounds on this
OV

Inf

MinECR 1 to p length vector of nonnegative
parameters specifying the Min bound
softness (0 = hard).

1 (dimensionless)

MaxECR 1 to p length vector of nonnegative
parameters specifying the Max bound
softness (0 = hard).

1 (dimensionless)

Name Read-only OV signal name (character vector) OutputName of LTI
plant model

Units Read-only OV signal units (character vector) OutputUnit of LTI
plant model

In order to reject constant disturbances due, for instance, to gain nonlinearities, the
default measured output disturbance model used in Model Predictive Control Toolbox
software is integrated white noise (see “Output Disturbance Model”).

3-4

 MPC Controller Object

DisturbanceVariables

DisturbanceVariables (or DV or Disturbance) is an (nv+nd)-dimensional array of
structures (nv = number of measured input disturbances, nd = number of unmeasured
input disturbances). Each structure has the fields described in the following table.

Disturbance Variable Structure

Field Name Content Default

ScaleFactor Nonnegative scale factor for this DV 1
Name Read-only DV signal name (character

vector)
InputName of LTI plant
model

Units Read-only DV signal units (character
vector)

InputUnit of LTI plant
model

The order of the disturbance signals within the array DV is the following: the first nv
entries relate to measured input disturbances, the last nd entries relate to unmeasured
input disturbances.

Weights

Weights is the structure defining the QP weighting matrices. It contains four fields.
The values of these fields depend on whether you are using the standard quadratic cost
function (see “Standard Cost Function”) or the alternative cost function (see “Alternative
Cost Function”).

Standard Cost Function

The table below lists the content of the four structure fields. In the table, p denotes the
prediction horizon, nu the number of manipulated variables, and ny the number of output
variables.

For the MV, MVRate and OV weights, if you specify fewer than p rows, the last row repeats
automatically to form a matrix containing p rows.

Weights for the Standard Cost Function

Field Name (Abbreviations) Content Default (dimensionless)

ManipulatedVariables (or MV
or Manipulated or Input)

(1 to p)-by-nu dimensional array
of nonnegative MV weights

zeros(1,nu)

3-5

3 Object Reference

Field Name (Abbreviations) Content Default (dimensionless)

ManipulatedVariablesRate (or
MVRate or ManipulatedRate or
InputRate)

(1 to p)-by-nu dimensional array
of MV-increment weights

0.1*ones(1,nu)

OutputVariables (or OV or
Controlled or Output)

(1 to p)-by-ny dimensional array
of OV weights

1 (The default for output
weights is the following:
if nu≥ny, all outputs are
weighted with unit weight;
if nu<ny, nu outputs default
to 1, with preference given
to measured outputs, and
the rest default to 0.)

ECR Scalar weight on the slack
variable ɛ used for constraint
softening

1e5*(max weight)

Note If all MVRate weights are strictly positive, the resulting QP problem is strictly
convex. If some MVRate weights are zero, the QP Hessian might be positive semidefinite.
In order to keep the QP problem strictly convex, when the condition number of the
Hessian matrix KΔU is larger than 1012, the quantity 10*sqrt(eps) is added to each
diagonal term. See “Cost Function”.

Alternative Cost Function

You can specify off-diagonal Q and R weight matrices in the cost function. To do so,
define the fields ManipulatedVariables, ManipulatedVariablesRate, and
OutputVariables as cell arrays, each containing a single positive-semi-definite matrix
of the appropriate size. Specifically, OutputVariables must be a cell array containing
the ny-by-ny Q matrix, ManipulatedVariables must be a cell array containing the nu-
by-nu Ru matrix, and ManipulatedVariablesRate must be a cell array containing
the nu-by-nu RΔu matrix (see “Alternative Cost Function” and the mpcweightsdemo
example). You can use diagonal weight matrices for one or more of these fields. If you
omit a field, the MPC controller uses the defaults shown in the table above.

For example, you can specify off-diagonal weights, as follows

MPCobj.Weights.OutputVariables = {Q};

3-6

 MPC Controller Object

MPCobj.Weights.ManipulatedVariables = {Ru};

MPCobj.Weights.ManipulatedVariablesRate = {Rdu};

where Q = Q. Ru = Ru, and Rdu = RΔu are positive semidefinite matrices.

Note You cannot specify non-diagonal weights that vary at each prediction horizon step.
The same Q, Ru, and Rdu weights apply at each step.

Model

The property Model specifies plant, input disturbance, and output noise models,
and nominal conditions, according to the model setup described in “Controller State
Estimation”. It is a 1-D structure containing the following fields.

Models Used by MPC

Field Name Content Default

Plant LTI model or identified
linear model of the plant

No default

Disturbance LTI model describing
expected unmeasured input
disturbances

[] (By default, input disturbances are
expected to be integrated white noise.
To model the signal, an integrator
with dimensionless unity gain is
added for each unmeasured input
disturbance, unless the addition
causes the controller to lose state
observability. In that case, the
disturbance is expected to be white
noise, and so, a dimensionless unity
gain is added to that channel instead.)

Noise LTI model describing
expected noise for output
measurements

[] (By default, measurement noise
is expected to be white noise with
unit variance. To model the signal, a
dimensionless unity gain is added for
each measured channel.)

Nominal Structure containing the
state, input, and output

The default values of the fields are
shown in the following table:

3-7

3 Object Reference

Field Name Content Default

values where Model.Plant
is linearized

Field Description Default

X Plant state at operating
point

[]

U Plant input at operating
point, including
manipulated variables
and measured
and unmeasured
disturbances

[]

Y Plant output at
operating point

[]

DX For continuous-time
models, DX is the state
derivative at operating
point: DX=f(X,U). For
discrete-time models,
DX=x(k+1)-x(k)=f(X,U)-X.

[]

Note Direct feedthrough from manipulated variables to any output in Model.Plant is
not allowed. See “MPC Modeling”.

Specify input and output signal types via the InputGroup and OutputGroup properties
of Model.Plant, or, more conveniently, use the setmpcsignals command. Valid signal
types are listed in the following tables.

Input Groups in Plant Model

Name (Abbreviations) Value

ManipulatedVariables (or MV or
Manipulated or Input)

Indices of manipulated variables in
Model.Plant

MeasuredDisturbances (or MD or
Measured)

Indices of measured disturbances in
Model.Plant

UnmeasuredDisturbances (or UD or
Unmeasured)

Indices of unmeasured disturbances in
Model.Plant

3-8

 MPC Controller Object

Output Groups in Plant Model

Name (Abbreviations) Value

MeasuredOutputs (or MO or Measured) Indices of measured outputs in
Model.Plant

UnmeasuredOutputs (or UO or
Unmeasured)

Indices of unmeasured outputs in
Model.Plant

By default, all Model.Plant inputs are manipulated variables, and all outputs are
measured.

The structure Nominal contains the values (in engineering units) for states, inputs,
outputs, and state derivatives/differences at the operating point where Model.Plant
applies. This point is typically a linearization point. The fields are reported in the
following table (see also “MPC Modeling”).

Nominal Values at Operating Point

Field Description Default

X Plant state at operating point []

U Plant input at operating point, including manipulated
variables and measured and unmeasured disturbances

[]

Y Plant output at operating point []

DX For continuous-time models, DX is the state derivative
at operating point: DX=f(X,U). For discrete-time models,
DX=x(k+1)-x(k)=f(X,U)-X.

[]

Ts

Sample time of the MPC controller. By default, if Model.Plant is a discrete-time
model, Ts = Model.Plant.ts. For continuous-time plant models, you must specify a
controller Ts. Its measurement unit is inherited from Model.Plant.TimeUnit.

Optimizer

Parameters for the QP optimization.Optimizer is a structure with the following fields:

Optimizer Properties

3-9

3 Object Reference

Field Description Default

MaxIter Maximum number of iterations allowed
in the QP solver, specified as one of the
following:

• 'Default' — The MPC controller
automatically computes the maximum
number of QP solver iterations as:

MaxIter = ◊ + + +() +()4 p n c n n n n
y cu cr u svc

where

• p is the prediction horizon.
• c is the control horizon.
• ncy is the number of OV constraints.
• ncu is the number of MV constraints.
• ncr is the number of MV rate

constraints.
• nu is the number of MVs.
• nsv is the number of slack variables.

• Positive integer — The QP solver stops
after MaxIter iterations.

'Default'

MinOutputECR Minimum value allowed for OutputMinECR
and OutputMaxECR, specified as a
nonnegative scalar. A value of 0 indicates
that hard output constraints are allowed. If
either of the OutputVariables.MinECR
or OutputVariables.MaxECR properties
of an MPC controller are less than
MinOutputECR, a warning is displayed and
the value is raised to MinOutputECR during
computation.

0

CustomSolver Flag indicating whether to use a custom
QP solver, specified as a logical value. If

false

3-10

 MPC Controller Object

Field Description Default

CustomSolver is true, the user must
provide an mpcCustomSolver function on
the MATLAB path. For information on how
to define the mpcCustomSolver function,
see “Custom QP Solver”.

Note: The default MaxIter value can be very large for some controller configurations,
such as those with large prediction and control horizons. When simulating such
controllers, if the QP solver cannot find a feasible solution, the simulation can appear to
stop responding, since the solver continues searching for MaxIter iterations.

PredictionHorizon

PredictionHorizon is the integer number of prediction horizon steps. The control
interval, Ts, determines the duration of each step. The default value is 10 + maximum
intervals of delay (if any).

ControlHorizon

ControlHorizon is either a number of free control moves, or a vector of blocking moves
(see “Optimization Variables”). The default value is 2.

History

History stores the time the MPC controller was created (read only).

Notes

Notes stores text or comments as a cell array of character vectors.

UserData

Any additional data stored within the MPC controller object.

3-11

3 Object Reference

Construction and Initialization

To minimize computational overhead, Model Predictive Controller creation occurs in two
phases. The first happens at construction when you invoke the mpc command, or when
you change a controller property. Construction involves simple validity and consistency
checks, such as signal dimensions and non-negativity of weights.

The second phase is initialization, which occurs when you use the object for the first time
in a simulation or analytical procedure. Initialization computes all constant properties
required for efficient numerical performance, such as matrices defining the optimal
control problem and state estimator gains. Additional, diagnostic checks occur during
initialization, such as verification that the controller states are observable.

By default, both phases display informative messages in the command window. You can
turn these messages on or off using the mpcverbosity command.

3-12

 MPC Simulation Options Object

MPC Simulation Options Object

The mpcsimopt object type contains various simulation options for simulating an MPC
controller with the command sim. Its properties are listed in the following table.

MPC Simulation Options Properties

Property Description

PlantInitialState Initial state vector of the plant model generating the
data.

ControllerInitialState Initial condition of the MPC controller. This must be
a valid mpcstate object.

Note Nonzero values of
ControllerInitialState.LastMove are
only meaningful if there are constraints on the
increments of the manipulated variables.

UnmeasuredDisturbance Unmeasured disturbance signal entering the plant.

An array with as many rows as simulation steps,
and as many columns as unmeasured disturbances.
Default: 0

InputNoise Noise on manipulated variables.

An array with as many rows as simulation steps,
and as many columns as manipulated variables. The
last sample of the array is extended constantly over
the horizon to obtain the correct size. Default: 0

OutputNoise Noise on measured outputs.

An array with as many rows as simulation steps,
and as many columns as measured outputs. The last
sample of the array is extended constantly over the
horizon to obtain the correct size. Default: 0

RefLookAhead Preview on reference signal ('on' or 'off').
Default: 'off'

3-13

3 Object Reference

Property Description

MDLookAhead Preview on measured disturbance signal ('on' or
'off').

Constraints Use MPC constraints ('on' or 'off'). Default:
'on'

Model Model used in simulation for generating the data.

This property is useful for simulating the MPC
controller under model mismatch. The LTI object
specified in Model can be either a replacement for
Model.Plant, or a structure with fields Plant
and Nominal. By default, Model is equal to
MPCobj.Model (no model mismatch). If Model is
specified, then PlantInitialState refers to the
initial state of Model.Plant and is defaulted to
Model.Nominal.x.

If Model.Nominal is empty, Model.Nominal.U
and Model.Nominal.Y are inherited from
MPCobj.Model.Nominal. Model.Nominal.X/
DX is only inherited if both plants are state-space
objects with the same state dimension.

StatusBar Display the wait bar ('on' or 'off'). Default:
'off'

MVSignal Sequence of manipulated variables (with offsets) for
open-loop simulation (no MPC action).

An array with as many rows as simulation steps,
and as many columns as manipulated variables.
Default: 0

OpenLoop Perform open-loop simulation ('on' or 'off').
Default: 'off'

The property Model is useful for simulating an MPC controller with “model mismatch”,
i.e., when the controller’s prediction model only approximates the true plant behavior
(inevitable in practice).

3-14

 MPC Simulation Options Object

By default, Model is equal to MPCobj.Model (no model mismatch). If Model is specified,
then PlantInitialState refers to the initial state of Model.Plant and defaults to
Model.Nominal.x.

If Model.Nominal is empty, Model.Nominal.U and Model.Nominal.Y are inherited
from MPCobj.Model.Nominal. Model.Nominal.X/DX is only inherited if both plants
are state-space objects with the same state dimension.

3-15

3 Object Reference

MPC State Object

The mpcstate object type contains the state of an MPC controller. Create the MPC state
object using mpcstate. Its properties are as follows.

Property Description

Plant Vector of state estimates for the controller’s plant model. Values
are in engineering units and are absolute, i.e., they include
state offsets.

If the controller’s plant model includes delays, the Plant field
of the MPC state object includes states that model the delays.
Therefore length(Plant) > order of undelayed controller
plant model.

Default: controller’s Model.Nominal.X property.
Disturbance Vector of unmeasured disturbance model state estimates. This

comprises the states of the input disturbance model followed by
the states of the output disturbances model.

Disturbance models may be created by default. Use the
getindistand getoutdistcommands to view the two
disturbance model structures.

Default: zero, or empty if there are no disturbance model states.
Noise Vector of output measurement noise model state estimates.

Default: zero, or empty if there are no noise model states.
LastMove Vector of manipulated variables used in the previous control

interval, u(k–1). Values are absolute, i.e., they include
manipulated variable offsets.

Default: nominal values of the manipulated variables.
Covariance n-by-n symmetrical covariance matrix for the controller state

estimates, where n is the dimension of the extended controller
state, i.e., the sum of the number states contained in the Plant,
Disturbance, and Noise fields.

3-16

 MPC State Object

Property Description

Default: If the controller is employing default state estimation
the default is the steady-state covariance computed according
to the assumptions in “Controller State Estimation”. See also
the description of the P matrix in the Control System Toolbox
kalmd command. If the controller is employing custom state
estimation, this field is empty (not used).

3-17

3 Object Reference

Explicit MPC Controller Object

An explicit MPC object contains the explicit control law equivalent to the traditional
(implicit) MPC controller object from which it derives. Use an explicit MPC controller to
implement MPC in applications requiring very rapid computations, i.e., a short control
interval. Use the generateExplicitMPC command to create the object. Its properties
are as follows:

Properties

Property Description

MPC Traditional (implicit) controller object used
to generate the explicit MPC controller.
You create this MPC controller using is
the mpc command. It is the first argument
to generateExplicitMPC when you
create the explicit MPC controller. See
“MPC Controller Object” on page 3-2 or
type mpcprops for details regarding the
properties of the MPC controller.

Range 1-D structure containing the parameter
bounds used to generate the explicit
MPC controller. These determine the
resulting controller’s valid operating
range. This property is automatically
populated by the range input argument
to generateExplicitMPC when you
create the explicit MPC controller. See
generateExplicitRange for details
about this structure.

OptimizationOptions 1-D structure containing user-modifiable
options used to generate the explicit MPC
controller. This property is automatically
populated by the opt argument to
generateExplicitMPC when you
create the explicit MPC controller. See
generateExplicitOptions for details
about this structure.

3-18

 Explicit MPC Controller Object

Property Description

PiecewiseAffineSolution nr-dimensional structure, where nr is the
number of piecewise affine (PWA) regions
required to represent the control law. The
ith element contains the details needed to
compute the optimal manipulated variables
when the solution lies within the ith region.
See “Implementation”.

IsSimplified Logical switch indicating whether the
explicit control law has been modified
using the simplify command such that
the explicit control law approximates
the base (implicit) MPC controller. If the
control law has not been modified, the
explicit controller should reproduce the
base controller’s behavior exactly, provided
both operate within the bounds described
by the Range property.

3-19

